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vLLM using built-in hash() from Python
3.12 leads to predictable hash collisions
in vLLM prefix cache
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Package

 vllm (pip)
Affected versions

all
Patched versions

>=0.7.2

Description

Summary

Maliciously constructed prompts can lead to hash collisions, resulting in
prefix cache reuse, which can interfere with subsequent responses and cause
unintended behavior.

Details

vLLM's prefix caching makes use of Python's built-in hash() function. As of
Python 3.12, the behavior of hash(None) has changed to be a predictable
constant value. This makes it more feasible that someone could try exploit
hash collisions.

Impact

The impact of a collision would be using cache that was generated using
different content. Given knowledge of prompts in use and predictable
hashing behavior, someone could intentionally populate the cache using a
prompt known to collide with another prompt in use.

Solution

We address this problem by initializing hashes in vllm with a value that is no
longer constant and predictable. It will be different each time vllm runs. This
restores behavior we got in Python versions prior to 3.12.
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Using a hashing algorithm that is less prone to collision (like sha256, for
example) would be the best way to avoid the possibility of a collision.
However, it would have an impact to both performance and memory
footprint. Hash collisions may still occur, though they are no longer straight
forward to predict.

To give an idea of the likelihood of a collision, for randomly generated hash
values (assuming the hash generation built into Python is uniformly
distributed), with a cache capacity of 50,000 messages and an average
prompt length of 300, a collision will occur on average once every 1 trillion
requests.
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