
vllm-project / vllm Public

vLLM using built-in hash() from Python
3.12 leads to predictable hash collisions
in vLLM prefix cache

Low russellb published GHSA-rm76-4mrf-v9r8 2 days ago

Package

 vllm (pip)
Affected versions

all
Patched versions

>=0.7.2

Description

Summary

Maliciously constructed prompts can lead to hash collisions, resulting in
prefix cache reuse, which can interfere with subsequent responses and cause
unintended behavior.

Details

vLLM's prefix caching makes use of Python's built-in hash() function. As of
Python 3.12, the behavior of hash(None) has changed to be a predictable
constant value. This makes it more feasible that someone could try exploit
hash collisions.

Impact

The impact of a collision would be using cache that was generated using
different content. Given knowledge of prompts in use and predictable
hashing behavior, someone could intentionally populate the cache using a
prompt known to collide with another prompt in use.

Solution

We address this problem by initializing hashes in vllm with a value that is no
longer constant and predictable. It will be different each time vllm runs. This
restores behavior we got in Python versions prior to 3.12.

Severity

Low / 10

CVSS v3 base metrics

Attack vector Network

Attack complexity High

Privileges required Low

User
interaction

Required

Scope Unchanged

Confidentiality None

Integrity Low

Availability None

CVSS:3.1/AV:N/AC:H/PR:L/UI:R
/S:U/C:N/I:L/A:N

CVE ID

CVE-2025-25183

Weaknesses

No CWEs

Credits

 kexinoh Reporter

Code Issues 1.2k Pull requests 499 Discussions Actions Security 2

2.6

Learn more about base
metrics

https://github.com/vllm-project
https://github.com/vllm-project/vllm
https://github.com/russellb
https://github.com/advisories?query=ecosystem%3Apip
https://github.com/kexinoh
https://github.com/kexinoh
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm/issues
https://github.com/vllm-project/vllm/pulls
https://github.com/vllm-project/vllm/discussions
https://github.com/vllm-project/vllm/actions
https://github.com/vllm-project/vllm/security
https://github.com/vllm-project/vllm/pulse


Using a hashing algorithm that is less prone to collision (like sha256, for
example) would be the best way to avoid the possibility of a collision.
However, it would have an impact to both performance and memory
footprint. Hash collisions may still occur, though they are no longer straight
forward to predict.

To give an idea of the likelihood of a collision, for randomly generated hash
values (assuming the hash generation built into Python is uniformly
distributed), with a cache capacity of 50,000 messages and an average
prompt length of 300, a collision will occur on average once every 1 trillion
requests.

References

#12621
python/cpython@ 432117c

python/cpython#99541

https://github.com/vllm-project/vllm/pull/12621
https://github.com/python/cpython/commit/432117cd1f59c76d97da2eaff55a7d758301dbc7
https://github.com/python/cpython/pull/99541

