
+45 −10 

vllm-project / vllm Public

[Core] Improve hash collision avoidance in
prefix caching #12621

 Merged

comaniac merged 1 commit into  from   5 days ago

 Conversation 15  Commits 1  Checks 4  Files changed 3

Assignees

No one assigned

Labels

ready v1

Projects

None yet

Milestone

No milestone

Code Issues 1.2k Pull requests 499 Discussions Actions Security 2

New issue

vllm-project:main russellb:hash-collisions

russellb commented last week

Prefix caching makes use of Python's built-in hash()
function. As of
Python 3.12, the behavior of hash(None)  has changed to be
a
predictable constant value. This makes it more feasible that
someone
could try exploit hash collisions.

The impact of a collision would be using cache that was
generated using
different content. Given knowledge of prompts in use and
predictable hashing
behavior, someone could intentionally populate the cache
using a prompt
known to collide with another prompt in use. There doesn't
seem to be much
value to an attacker in doing this, but it's certainly not ideal,
and could
interfere with the accuracy of results for another user.

The invasiveness of this fix should be weighed against the
severity of the
issue to determine whether this is worth fixing.

Member
Reviewers

mgoin

comaniac

WoosukKwon

robertgshaw2-redhat

njhill

ywang96

alexm-redhat

zhuohan123

youkaichao

DarkLight1337

https://github.com/vllm-project
https://github.com/vllm-project/vllm
https://github.com/comaniac
https://github.com/vllm-project/vllm/pull/12621
https://github.com/vllm-project/vllm/pull/12621/commits
https://github.com/vllm-project/vllm/pull/12621/checks
https://github.com/vllm-project/vllm/pull/12621/files
https://github.com/vllm-project/vllm/labels/ready
https://github.com/vllm-project/vllm/labels/v1
https://github.com/vllm-project/vllm
https://github.com/vllm-project/vllm/issues
https://github.com/vllm-project/vllm/pulls
https://github.com/vllm-project/vllm/discussions
https://github.com/vllm-project/vllm/actions
https://github.com/vllm-project/vllm/security
https://github.com/vllm-project/vllm/pulse
https://github.com/vllm-project/vllm/tree/main
https://github.com/vllm-project/vllm/tree/main
https://github.com/vllm-project/vllm/tree/main
https://github.com/russellb/vllm/tree/hash-collisions
https://github.com/russellb/vllm/tree/hash-collisions
https://github.com/russellb/vllm/tree/hash-collisions
https://github.com/russellb
https://github.com/mgoin
https://github.com/mgoin
https://github.com/vllm-project/vllm/pull/12621/files/98b121ae453a992bc3ce44205529934c313135e2
https://github.com/comaniac
https://github.com/comaniac
https://github.com/vllm-project/vllm/pull/12621/files/3dc5cf0aa4c1807b97b3d6a3948ba8f4f4261c5a
https://github.com/WoosukKwon
https://github.com/WoosukKwon
https://github.com/robertgshaw2-redhat
https://github.com/robertgshaw2-redhat
https://github.com/njhill
https://github.com/njhill
https://github.com/ywang96
https://github.com/ywang96
https://github.com/alexm-redhat
https://github.com/alexm-redhat
https://github.com/zhuohan123
https://github.com/zhuohan123
https://github.com/youkaichao
https://github.com/youkaichao
https://github.com/DarkLight1337
https://github.com/DarkLight1337
https://github.com/russellb


Development

Successfully merging this pull request may
close these issues.

None yet

7 participants

Using a hashing algorithm that is less prone to collision (like
sha256, for
example) would be the best way to avoid the possibility of a
collision.
However, it would have an impact to both performance and
memory footprint.
An alternative is to continue to use hash() , but make it
much more difficult
to predict the hash value.

What we want is that the starting hash value is randomized,
which is the
behavior we got here prior to Python 3.12. An easy fix is to
use a
string. Here we use 'None'  to still make it clear we're
starting from
nothing, but with a string we'll get a different hash value each
time
vllm runs. Note that within a given run, the value will remain
the same.
This restores the safer hashing behavior from before.

Thank you very much to @kexinoh for reporting this concern
privately so
that it could be evaluated for its severity prior to our decision
to fix
this as a security enhancement.

The commit that changed this behavior for Python 3.12 is
here:

Signed-off-by: Russell Bryant rbryant@redhat.com

python/cpython@ 432117c

gh-99540: Constant hash for _PyNone_Type to aid
reproducibility python/cpython#99541

 russellb requested review from WoosukKwon,
robertgshaw2-redhat, njhill, ywang96, comaniac, alexm-
redhat, zhuohan123 and youkaichao as code owners
last week

github-actions bot  commented last week

https://github.com/russellb
https://github.com/mgoin
https://github.com/comaniac
https://github.com/markmc
https://github.com/nFunctor
https://github.com/kexinoh
https://github.com/ilayathalapathy-3719
https://github.com/kexinoh
mailto:rbryant@redhat.com
https://github.com/python/cpython/commit/432117cd1f59c76d97da2eaff55a7d758301dbc7
https://github.com/python/cpython/pull/99541
https://github.com/python/cpython/pull/99541
https://github.com/python/cpython/pull/99541
https://github.com/russellb
https://github.com/WoosukKwon
https://github.com/robertgshaw2-redhat
https://github.com/njhill
https://github.com/ywang96
https://github.com/comaniac
https://github.com/alexm-redhat
https://github.com/alexm-redhat
https://github.com/zhuohan123
https://github.com/youkaichao
https://github.com/vllm-project/vllm/blob/7a8987dac5f0ed0c798a73e8b4ec8f5e640bc63a/.github/CODEOWNERS#L18
https://github.com/russellb
https://github.com/apps/github-actions
https://github.com/apps/github-actions


👋 Hi! Thank you for contributing to the vLLM project.
Just a reminder: PRs would not trigger full CI run by default.
Instead, it would only run fastcheck  CI which starts running
only a small and essential subset of CI tests to quickly catch
errors. You can run other CI tests on top of those by going to
your fastcheck  build on Buildkite UI (linked in the PR checks
section) and unblock them. If you do not have permission to
unblock, ping simon-mo  or khluu  to add you in our Buildkite
org.

Once the PR is approved and ready to go, your PR reviewer(s)
can run CI to test the changes comprehensively before
merging.

To run CI, PR reviewers can do one of these:

Add ready  label to the PR

Enable auto-merge.

🚀

comaniac approved these changes
last week

View reviewed changes

comaniac left a comment

LGTM

Collaborator

 comaniac added the ready  label last week

 comaniac enabled auto-merge (squash) last week

mgoin commented last week

Maybe this is still an issue with other hashers, but is there a
reason why we don't use blake3 for hashing in the text case?
It is currently what we use in the multimodal case for
performance reasons AFAIK https://github.com/vllm-
project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f060
7e/vllm/multimodal/hasher.py

Member

comaniac commented last week Collaborator

https://github.com/comaniac
https://github.com/vllm-project/vllm/pull/12621/files
https://github.com/comaniac
https://github.com/comaniac
https://github.com/comaniac
https://github.com/vllm-project/vllm/labels/ready
https://github.com/comaniac
https://github.com/comaniac
https://github.com/mgoin
https://github.com/vllm-project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f0607e/vllm/multimodal/hasher.py
https://github.com/vllm-project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f0607e/vllm/multimodal/hasher.py
https://github.com/vllm-project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f0607e/vllm/multimodal/hasher.py
https://github.com/comaniac
https://github.com/comaniac
https://github.com/mgoin
https://github.com/comaniac


Maybe this is still an issue with other hashers, but is
there a reason why we don't use blake3 for hashing in
the text case? It is currently what we use in the
multimodal case for performance reasons AFAIK
https://github.com/vllm-
project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4
f0607e/vllm/multimodal/hasher.py

AFAIK it's just because hash  has decent performance for
short texts, but yeah we could benchmark blake3 in this
scenario and see if we should use it here too.

2

mergify bot  commented last week

This pull request has merge conflicts that must be resolved
before it can be
merged. Please rebase the PR, @russellb.

https://docs.github.com/en/pull-requests/collaborating-with-
pull-requests/working-with-forks/syncing-a-fork

 mergify bot  added needs-rebase  v1  labels last week

auto-merge was automatically disabled 5 days ago
Head branch was pushed to by a user without write access

 russellb force-pushed the  branch from
3dc5cf0 to f0efd13 5 days ago

hash-collisions

Compare

 mergify bot  removed the needs-rebase  label
5 days ago

 russellb requested a review from DarkLight1337 as a
code owner 5 days ago

mergify bot  commented 5 days ago

This pull request has merge conflicts that must be resolved
before it can be
merged. Please rebase the PR, @russellb.

https://github.com/vllm-project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f0607e/vllm/multimodal/hasher.py
https://github.com/vllm-project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f0607e/vllm/multimodal/hasher.py
https://github.com/vllm-project/vllm/blob/e3f7ff65e7a6c08cd354f7f333bce543a4f0607e/vllm/multimodal/hasher.py
https://github.com/apps/mergify
https://github.com/russellb
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://github.com/apps/mergify
https://github.com/apps/mergify
https://github.com/vllm-project/vllm/labels/needs-rebase
https://github.com/vllm-project/vllm/labels/v1
https://github.com/russellb
https://github.com/vllm-project/vllm/compare/3dc5cf0aa4c1807b97b3d6a3948ba8f4f4261c5a..f0efd136851a8858c14fe1fc8abdf91008f9e10e
https://github.com/vllm-project/vllm/commit/3dc5cf0aa4c1807b97b3d6a3948ba8f4f4261c5a
https://github.com/vllm-project/vllm/commit/f0efd136851a8858c14fe1fc8abdf91008f9e10e
https://github.com/russellb
https://github.com/vllm-project/vllm/compare/3dc5cf0aa4c1807b97b3d6a3948ba8f4f4261c5a..f0efd136851a8858c14fe1fc8abdf91008f9e10e
https://github.com/apps/mergify
https://github.com/apps/mergify
https://github.com/vllm-project/vllm/labels/needs-rebase
https://github.com/russellb
https://github.com/DarkLight1337
https://github.com/vllm-project/vllm/blob/a1a2aaadb9122f05667140e39cf67e5736c8b6d6/.github/CODEOWNERS#L24
https://github.com/russellb
https://github.com/apps/mergify
https://github.com/russellb
https://github.com/apps/mergify
https://github.com/apps/mergify


https://docs.github.com/en/pull-requests/collaborating-with-
pull-requests/working-with-forks/syncing-a-fork

 mergify bot  added the needs-rebase  label 5 days ago

 russellb force-pushed the  branch from
65443ba to 98b121a 5 days ago

hash-collisions

Compare

 mergify bot  removed the needs-rebase  label
5 days ago

mgoin approved these changes
5 days ago

View reviewed changes

[Core] Improve hash collision avoidance

in prefix caching 

a032ee8
…

 russellb force-pushed the  branch from
98b121a to a032ee8 5 days ago

hash-collisions

Compare

 comaniac merged commit 73b35cc into
 5 days ago

46 checks passed

View details
vllm-project:main

markmc commented 4 days ago

Does this change what's noted in the design doc for v1 ?

Note 2: The above hash key structure is not 100%
collision free. Theoretically it’s still possible for the
different prefix tokens to have the same hash value, but
this should be nearly impossible to happen. Of course,
contributions are welcome if you have an awesome idea
to eliminate collusion entirely.

Contributor

comaniac commented 4 days ago

Does this change what's noted in the design doc for v1 ?

No this PR mainly deals with the None case.

Collaborator

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/syncing-a-fork
https://github.com/apps/mergify
https://github.com/apps/mergify
https://github.com/vllm-project/vllm/labels/needs-rebase
https://github.com/russellb
https://github.com/vllm-project/vllm/compare/65443bae219199195c929c41b53166e82b2e37fd..98b121ae453a992bc3ce44205529934c313135e2
https://github.com/vllm-project/vllm/commit/65443bae219199195c929c41b53166e82b2e37fd
https://github.com/vllm-project/vllm/commit/98b121ae453a992bc3ce44205529934c313135e2
https://github.com/russellb
https://github.com/vllm-project/vllm/compare/65443bae219199195c929c41b53166e82b2e37fd..98b121ae453a992bc3ce44205529934c313135e2
https://github.com/apps/mergify
https://github.com/apps/mergify
https://github.com/vllm-project/vllm/labels/needs-rebase
https://github.com/mgoin
https://github.com/vllm-project/vllm/pull/12621/files
https://github.com/vllm-project/vllm/pull/12621/commits/a032ee8f397d61719173cfd452bdf52b20eb586e
https://github.com/vllm-project/vllm/pull/12621/commits/a032ee8f397d61719173cfd452bdf52b20eb586e
https://github.com/vllm-project/vllm/pull/12621/commits/a032ee8f397d61719173cfd452bdf52b20eb586e
https://github.com/russellb
https://github.com/vllm-project/vllm/compare/98b121ae453a992bc3ce44205529934c313135e2..a032ee8f397d61719173cfd452bdf52b20eb586e
https://github.com/vllm-project/vllm/commit/98b121ae453a992bc3ce44205529934c313135e2
https://github.com/vllm-project/vllm/commit/a032ee8f397d61719173cfd452bdf52b20eb586e
https://github.com/russellb
https://github.com/vllm-project/vllm/compare/98b121ae453a992bc3ce44205529934c313135e2..a032ee8f397d61719173cfd452bdf52b20eb586e
https://github.com/comaniac
https://github.com/vllm-project/vllm/commit/73b35cca7f3745d07d439c197768b25d88b6ab7f
https://github.com/comaniac
https://github.com/markmc
https://github.com/vllm-project/vllm/blob/main/docs/source/design/v1/prefix_caching.md
https://github.com/comaniac
https://github.com/vllm-project/vllm/blob/main/docs/source/design/v1/prefix_caching.md
https://github.com/mgoin
https://github.com/russellb
https://github.com/markmc
https://github.com/comaniac


1

russellb commented 4 days ago

Does this change what's noted in the design doc for v1 ?

Note 2: The above hash key structure is not 100%
collision free. Theoretically it’s still possible for the
different prefix tokens to have the same hash value,
but this should be nearly impossible to happen. Of
course, contributions are welcome if you have an
awesome idea to eliminate collusion entirely.

I think that's still accurate. Collisions are still possible, but
what I was trying to avoid here is making it feasible to predict
those collisions because of predictable hashing behavior.

1

Member Author

nFunctor commented 4 days ago

Thanks for this PR @russellb . Perhaps if you have time for a
semi-related question...

We observed a fairly weird effect during some intense
generation, and perhaps it is related to this PR. The task
involved a generation of summaries over an extensive batch,
both prefix caching (the system prompts are fairly extensive)
and n-gram speculative decoding were on. We ended up with
"mixed summaries", eg a phrase like "London is the capital
of" got replaced with "London is my favourite" (and both
phrases existed in the inputs batch but for different batch
indices).

I first thought that something went wrong with the
speculative worker but I now start to think that perhaps it
could have been due to prefix cache? Would you think the
same? Apologies for the scarce details, unfortunately I am
not yet sure if I can reproduce the exact circumstances of that
generation experiment.

Contributor

kexinoh commented 4 days ago via email 

I am the discoverer of the problem, and we construct the 
phenomenon exactly as you say. Then I also need to add that 
hash(None) is not really a random value before Python3.12, 

https://github.com/russellb
https://github.com/vllm-project/vllm/blob/main/docs/source/design/v1/prefix_caching.md
https://github.com/nFunctor
https://github.com/russellb
https://github.com/kexinoh
https://github.com/russellb
https://github.com/nFunctor
https://github.com/kexinoh


but rather a memory address value (which makes it less 
random). In the case of Python VM, None may be set to 0.

…

1

russellb commented 3 days ago

Thanks for this PR @russellb . Perhaps if you have time
for a semi-related question...

We observed a fairly weird effect during some intense
generation, and perhaps it is related to this PR. The task
involved a generation of summaries over an extensive
batch, both prefix caching (the system prompts are fairly
extensive) and n-gram speculative decoding were on. We
ended up with "mixed summaries", eg a phrase like
"London is the capital of" got replaced with "London is
my favourite" (and both phrases existed in the inputs
batch but for different batch indices).

I first thought that something went wrong with the
speculative worker but I now start to think that perhaps
it could have been due to prefix cache? Would you think
the same? Apologies for the scarce details, unfortunately
I am not yet sure if I can reproduce the exact
circumstances of that generation experiment.

Can you clarify if this was observed prior to this PR going in,
or after? I want to make sure I didn't cause a regression.

If it was before, it's possible that you experienced a hash
collision. Prior to this PR, using Python 3.12, that collision
would be easily reproducible. After this PR, it would not. The
conditions for a collision should be different every time vllm
is run.

That doesn't remove the possibility for collisions, though.
That would take more work. It's very interesting to hear that
you may have observed this without going after it
intentionally!

Member Author

nFunctor commented 2 days ago

@russellb the issue happened with a docker build of vllm
(0.6.5, and I believe all recent images run on 3.12) so it was
observed before the PR. I have not done the tests with the
nightly build/docker from source yet. Never seen such things
happen outside docker in my python 3.11 venv.

Contributor

https://github.com/russellb
https://github.com/russellb
https://github.com/nFunctor
https://github.com/russellb
https://github.com/russellb
https://github.com/nFunctor


I am not sure I can go into the significant detail about the
setup where the bug was observed but here are some
elements:

AWQ checkpoint of Llama 3.1 70B instruct running lots of
requests. The GPU KV cache is often near 100%. The
server is queried by a collection of workers whose load
can vary.

Prefix caching, chunked prefill and n-gram speculative
decoding on.
The issue involved multiple entries in queue getting
confused (content switch) at a common word combo
("London is").

I would add that in my experience AWQ/Marlin-powered
models have a rare tendency to produce wrong answers that
consist of repeating strings, up to max tokens (I hope to find
time to document this issue at some point, it is not easy to
reproduce). From what you say it should not be related at all,
but thought I'd mention it as a known issue with the setup;
the latter is overall prone to some numerical instability even
without the hash collision.

2

ilayathalapathy-3719 commented yesterday

@russellb Do we need a CVE for it and have you requested
one already?

fxmarty-amd pushed a commit to fxmarty-amd/vllm that
referenced this pull request yesterday

[Core] Improve hash collision avoidance

in prefix caching (vllm-proje… 

93b6e6e
…

russellb commented yesterday

@russellb Do we need a CVE for it and have you
requested one already?

A CVE was assigned and is reflected here: GHSA-rm76-4mrf-
v9r8

Member Author

https://github.com/ilayathalapathy-3719
https://github.com/russellb
https://github.com/fxmarty-amd
https://github.com/fxmarty-amd/vllm/commit/93b6e6ecb7ae8cab020503bb634db4401f736f8b
https://github.com/fxmarty-amd/vllm/commit/93b6e6ecb7ae8cab020503bb634db4401f736f8b
https://github.com/vllm-project/vllm/pull/12621
https://github.com/fxmarty-amd/vllm/commit/93b6e6ecb7ae8cab020503bb634db4401f736f8b
https://github.com/russellb
https://github.com/russellb
https://github.com/vllm-project/vllm/security/advisories/GHSA-rm76-4mrf-v9r8
https://github.com/vllm-project/vllm/security/advisories/GHSA-rm76-4mrf-v9r8
https://github.com/ilayathalapathy-3719
https://github.com/fxmarty-amd
https://github.com/russellb
https://github.com/russellb

