
B l og pos t

Source Code at Risk: Critical Code

Vulnerability in CI/CD Platform

TeamCity

September 26, 2023
7 MIN READ

Stefan Schiller
VULNERAB IL ITY RESEARCHER

Secur i ty

S ta r t fo r f ree Exp lore pr i c ing

Upcoming Webinar!

Build better, faster: Supercharge your developers in 2025 - Register here.

https://www.sonarsource.com/blog/tag/security/
https://www.sonarsource.com/
https://www.sonarsource.com/open-source-editions/
https://www.sonarsource.com/plans-and-pricing/
https://www.sonarsource.com/resources/webinars/upcoming/

Update 2023-09-27: Full technical details added (see Technical Details section).

Sonar’s Vulnerability Research Team has discovered a critical security vulnerability in

TeamCity, a popular Continuous Integration and Continuous Deployment (CI/CD)

server from JetBrains.

The discovered vulnerability tracked as CVE-2023-42793 allows unauthenticated

attackers to execute arbitrary code on the TeamCity server (remote code execution,

RCE).

Attackers could leverage this access to steal source code, service secrets, and

private keys, take control over attached build agents, and poison build artifacts.

JetBrains released a dedicated blog post providing comprehensive information about

the vulnerability.

The vulnerability was fixed with TeamCity version 2023.05.4.

TeamCity is a widely used Continuous Integration and Continuous Deployment (CI/CD)

server from JetBrains deployed by more than 30,000 customers worldwide. The

application can either be used via the cloud-hosted solution TeamCity Cloud or

deployed on an own server via TeamCity on-premises. According to Shodan, more than

3,000 of these on-premises servers are directly exposed to the Internet.

CI/CD servers like TeamCity are used to automate the process of building, testing, and

deploying software applications. This means that these servers have access to one of

the most valuable assets of a company: source code. Since they are also responsible for

building and deploying this source code, they not only store sensitive secrets and keys

but also control the build artifacts, which become part of a software release. This

makes CI/CD servers a high-value target for attackers.

In this article, we explain the code vulnerability we discovered in TeamCity, determine

the root cause of it, and describe how this and similar vulnerabilities can be prevented.

Key Information

Introduction

Impact

https://cve.report/CVE-2023-42793
https://blog.jetbrains.com/teamcity/2023/09/critical-security-issue-affecting-teamcity-on-premises-update-to-2023-05-4-now/
https://www.jetbrains.com/help/teamcity/teamcity-2023-05-4-release-notes.html

TeamCity server version 2023.05.3 and below is prone to an authentication bypass,

which allows an unauthenticated attacker to gain remote code execution (RCE) on

the server. This enables attackers not only to steal source code but also stored service

secrets and private keys. And it’s even worse: With access to the build process,

attackers can inject malicious code, compromising the integrity of software releases

and impacting all downstream users. The attack does not require any user interaction:

We want to emphasize the importance of prompt action to mitigate this risk.

Because this vulnerability does not require a valid account on the target instance and is

trivial to exploit, it is likely that this vulnerability will be exploited in the wild.

We strongly advise all TeamCity users to apply the latest patch provided by JetBrains as

soon as possible. The first release known to address the vulnerability is TeamCity

version 2023.05.4. TeamCity Cloud is not affected by the vulnerability.

The existence of an authentication token named RPC2 is a strong indicator of

compromise. A token with this name was very likely created by an unauthorized and

potentially malicious user to gain access to the server:

Demonstration of TeamCity vulnerability on a test instanceDemonstration of TeamCity vulnerability on a test instance

Indicators of Compromise

https://www.jetbrains.com/help/teamcity/teamcity-2023-05-4-release-notes.html
https://www.jetbrains.com/help/teamcity/teamcity-2023-05-4-release-notes.html
https://www.youtube.com/watch?v=O2p-6I8RK5c

Please notice that an attacker may have deleted or renamed the token after gaining a

foothold on the server.

In the interest of responsible disclosure and ethical reporting, it’s crucial to emphasize

that the technical details of this critical vulnerability were disclosed only after careful

consideration and the public release of a corresponding exploit. Every effort was made

to ensure that JetBrains had adequate time and information to address and remediate

the vulnerability. The goal is not only to highlight the potential risks and solutions but

also to collaborate towards a safer and more secure digital landscape for all

stakeholders involved.

TeamCity uses request interceptors in order to perform specific actions for every HTTP

request. One of these actions implemented via a request interceptor is the

authorization mechanism.

The class responsible for applying this and other interceptors is called

RequestInterceptors . When a request is received, the preHandle method of this class

is invoked, which determines if the request is suitable for pre-handling by calling

requestPreHandlingAllowed :

Technical Details

Request Interceptors

jetbrains.buildServer.controllers.interceptors.RequestInterceptors

public final boolean preHandle(HttpServletRequest req, ...) {
 if (!this.requestPreHandlingAllowed(req)) {
 return true;
 }

https://attackerkb.com/topics/1XEEEkGHzt/cve-2023-42793/rapid7-analysis
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/HandlerInterceptor.html

Amongst other things, this method checks if the requested path matches a predefined

list of path expressions (myPreHandlingDisabled). For matching paths, no pre-handling

should be applied:

In the constructor of RequestInterceptors , two path expressions are added, which

should be excluded from any pre-handling processing:

The first path expression starts with the static string "/**" , followed by the return

value of XmlRpcController.getPathSuffix() , which returns the static string "/RPC2" :

Thus, the resulting path expression is "/**/RPC2" . For requests to a path matching this

expression, no pre-handling interceptors are applied. This also means that for these

requests, no authorization check is performed.

 // ...
}

jetbrains.buildServer.controllers.interceptors.RequestInterceptors

private boolean requestPreHandlingAllowed(@NotNull HttpServletRequest req) {
 // ...
 if
(!this.myPreHandlingDisabled.matches(WebUtil.getPathWithoutContext(req))) {
 return true;
 }
 // path matches myPreHandlingDisabled? no pre-handling!
 return false;
}

jetbrains.buildServer.controllers.interceptors.RequestInterceptors

public RequestInterceptors(@NotNull List<HandlerInterceptor> var1) {
 // ...
 this.myPreHandlingDisabled.addPath("/**" +
XmlRpcController.getPathSuffix());
 this.myPreHandlingDisabled.addPath("/app/agents/**");
}

jetbrains.buildServer.controllers.XmlRpcController

public class XmlRpcController extends AbstractController {
 public static String getPathSuffix() {
 return "/RPC2";
 }
 // ...
}

This is particularly dangerous because this expression allows arbitrary prefixes in the

requested path due to the two asterisks ("/**/"). This effectively disables the

authorization check for every request to a path ending with /RPC2 .

TeamCity provides a REST API for integrating external applications. The available

endpoints are documented here. One of these endpoints allows the creation of a user

authentication token via the route /app/rest/users/<userLocator>/tokens . Since this

endpoint route ends with the static suffix "/tokens" , it cannot be used to bypass the

authentication.

However, the documentation does not contain all endpoints. There are additional

hidden endpoints. One of these is a slightly different version of the token creation

endpoint:

This endpoint also creates a user authentication token, but it additionally allows the

provision of a name for this token via the {name} request path parameter. Since this

name can be arbitrarily set, RPC2 is considered valid:

Request Path Parameters

jetbrains.buildServer.server.rest.request.UserRequest

@Api("User")
@Path(UserRequest.API_USERS_URL)
public class UserRequest {
 // ...
 @Path("/{userLocator}/tokens/{name}")
 @ApiOperation(value = "Create a new authentication token for the
matching user.", nickname = "addUserToken", hidden = true)
 @POST
 @Produces({"application/xml", "application/json"})
 public Token createToken(@PathParam("userLocator") @ApiParam(format =
"UserLocator") String userLocator, @PathParam("name") @NotNull String name,
...) {
 // ...
 SUser user = this.myUserFinder.getItem(userLocator, true);
 AuthenticationToken token =
tokenAuthenticationModel.createToken(user.getId(), name, ...);
 return new Token(token, ...);
 }
}

https://www.jetbrains.com/help/teamcity/rest/teamcity-rest-api-documentation.html
https://www.jetbrains.com/help/teamcity/rest/userapi.html#addUserToken
https://www.jetbrains.com/help/teamcity/rest/userapi.html#addUserToken

Thus, an unauthenticated attacker can create a new authentication token for any user

via the following request:

The response to this request contains the authentication token for the user specified via

the <userLocator> (e.g., id:1 for the default admin account). This token can then be

used to access the application.

While we won't be sharing exploitation details, with access to the admin account, there

are various ways to execute arbitrary code on the server.

Authorization checks are usually applied to endpoint handlers individually. This might

be as simple as adding a specific decorator or deriving the controller class from a

predefined authenticated-only base controller class. TeamCity took an even more

secure approach: all endpoints require the user to be authenticated by default. If an

endpoint should be made available without authentication, this needs to be explicitly

defined in the endpoint handler.

This secure-by-default approach is the preferred way, but it still has a blind spot: global

request interceptors. Depending on the programming language and framework, these

are usually called middleware, filters, hooks, or interceptors. The purpose of them is to

perform specific actions for every HTTP request. Because they are implemented in a

separate class or function independent of the specific endpoint handlers, they are often

overlooked during security assessments. Whether you are looking at it from the

POST /app/rest/users/<userLocator>/tokens/RPC2

Learnings

defensive or offensive perspective: always consider these global request interceptors as

part of the exposed attack surface!

Another sensitive aspect from a security point of view is the usage of wildcard

expressions. These are used in scenarios where a static value is not sufficient to

represent all acceptable inputs. The downside of this is that an expression chosen too

unrestrictively allows more than actually intended. In this case, the "/**/RPC2"

wildcard was never supposed to also include the REST API endpoints. To prevent these

kinds of issues a generally good approach is to be as restrictive as possible.

The vulnerability was fixed with TeamCity version 2023.05.4. By now, the only way the

/RPC2 endpoint should be accessed is directly without any prefixes in the requested

path. The patch removes the wildcard expression for the /RPC2 pre-handling

exception:

This way, pre-handling is only disabled when directly accessing /RPC2 without any

additional prefixes in the requested path and cannot be leveraged to bypass the

authentication for other endpoints.

Our Vulnerability Research team stood in close communication with JetBrains, and we

would like to thank them for their efficient collaboration:

DATE ACT ION

Patch

jetbrains.buildServer.controllers.interceptors.RequestInterceptors

public RequestInterceptors(@NotNull List<HandlerInterceptor> var1) {
 // ...
- this.myPreHandlingDisabled.addPath("/**" +
XmlRpcController.getPathSuffix());
+ this.myPreHandlingDisabled.addPath(XmlRpcController.getPathSuffix());
}

Timeline

https://www.jetbrains.com/help/teamcity/teamcity-2023-05-4-release-notes.html

2023-09-06,

10:44 CET
We report the issue to JetBrains.

2023-09-06,

12:39 CET
JetBrains confirms receipt of the report.

2023-09-06,

12:54 CET
JetBrains reproduces the issue.

2023-09-07 JetBrains fixes the issue in 2023.05 branch.

2023-09-12
JetBrains prepares the plugin that could be used as a

workaround.

2023-09-14

JetBrains sends an update:

The issue has been reproduced and confirmed to be a major

security issue.

2023-09-18
TeamCity version 2023.05.4 is released, which fixes the

vulnerability.

2023-09-18
JetBrains sends notifications to customers asking them to

update as soon as possible.

2023-09-19 CVE-2023-42793 is published.

2023-09-21
Coordinated release of first blog posts from JetBrains and

Sonar.

SHARE

2023-09-27 Full disclosure after a public exploit was released.

In this article, we outlined the impact of a critical vulnerability we discovered in the

popular CI/CD server TeamCity. We determined the root cause of the vulnerability and

outlined how attackers could leverage it. Furthermore, we provided general

recommendations on preventing these kinds of issues and looked at the patch applied

to fix the vulnerability.

At last, we would like to give a huge shoutout to JetBrains, who quickly confirmed the

vulnerability, informed all affected users, and provided a fix. Thank you!

Agent 007: Pre-Auth Takeover of Build Pipelines in GoCD

Agent 008: Chaining Vulnerabilities to Compromise GoCD

Securing Developer Tools: A New Supply Chain Attack on PHP

Securing Developer Tools: OneDev Remote Code Execution

Securing Developer Tools: Argument Injection in Visual Studio Code

Summary

Related Blog Posts

https://twitter.com/share?text=undefined
https://twitter.com/share?text=undefined
https://www.facebook.com/sharer/sharer.php?u=undefined
https://www.facebook.com/sharer/sharer.php?u=undefined
https://www.linkedin.com/sharing/share-offsite/?url=undefined
https://www.linkedin.com/sharing/share-offsite/?url=undefined
mailto:?subject=SonarSource&body=undefined
mailto:?subject=SonarSource&body=undefined
https://www.sonarsource.com/blog/gocd-pre-auth-pipeline-takeover/
https://www.sonarsource.com/blog/gocd-vulnerability-chain/
https://www.sonarsource.com/blog/securing-developer-tools-a-new-supply-chain-attack-on-php/
https://www.sonarsource.com/blog/onedev-remote-code-execution/
https://www.sonarsource.com/blog/securing-developer-tools-argument-injection-in-vscode/
https://www.sonarsource.com/
https://www.sonarsource.com/

Sona r So lut ions

P roducts

P r i c ing

Company

Med ia

Resources

Knowledge

SAST

What is clean code

Power of clean code

Clean as you code

AI-assisted & quality-assured code

DevOps transformation

Outsourcing software development

Reduce & manage technical debt

Secure by design

Code coverage

Code review

For developers

For enterprise

Infrastructure as code

Public sector

SonarQube for IDE

SonarQube Server

SonarQube Cloud

Start for free

Explore pricing

About

Careers

Commitment to open source

Customers

Partners

Contact us

Accessibility

NEW! Brand identity

Coverage

Press releases

Events hub

Customer stories

White papers

Learn

Community

Support

Explore Sonarpedia

Blog

Languages

SonarQube Server Documentation

SonarQube Cloud Documentation

SonarQube for IDE Documentation

Legal documentation

Trust center

https://twitter.com/sonarsource
https://www.linkedin.com/company/sonarsource/
https://www.sonarsource.com/solutions/security/
https://www.sonarsource.com/solutions/clean-code/
https://www.sonarsource.com/solutions/power-of-clean-code/
https://www.sonarsource.com/solutions/our-unique-approach/
https://www.sonarsource.com/solutions/ai/
https://www.sonarsource.com/solutions/devops-transformation/
https://www.sonarsource.com/solutions/reduce-outsourcing-software-development-risk/
https://www.sonarsource.com/solutions/reduce-technical-debt/
https://www.sonarsource.com/solutions/secure-by-design-code/
https://www.sonarsource.com/solutions/code-coverage/
https://www.sonarsource.com/solutions/code-review/
https://www.sonarsource.com/solutions/for-developers/
https://www.sonarsource.com/solutions/for-enterprise/
https://www.sonarsource.com/solutions/infrastructure-as-code/
https://www.sonarsource.com/solutions/public-sector/
https://www.sonarsource.com/products/sonarlint/
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarcloud/
https://www.sonarsource.com/open-source-editions/
https://www.sonarsource.com/plans-and-pricing/
https://www.sonarsource.com/company/about/
https://www.sonarsource.com/company/careers/
https://www.sonarsource.com/solutions/commitment-to-open-source/
https://www.sonarsource.com/company/customers/
https://www.sonarsource.com/company/partners/
https://www.sonarsource.com/company/contact/
https://www.sonarsource.com/accessibility/
https://www.sonarsource.com/brand-identity/
https://www.sonarsource.com/company/coverage/
https://www.sonarsource.com/company/press-releases/
https://www.sonarsource.com/resources/events/
https://www.sonarsource.com/resources/customer-stories/
https://www.sonarsource.com/resources/white-papers/
https://www.sonarsource.com/learn/guide/
https://community.sonarsource.com/
https://www.sonarsource.com/support/
https://rules.sonarsource.com/
https://www.sonarsource.com/blog/
https://www.sonarsource.com/knowledge/languages/
https://docs.sonarsource.com/sonarqube/latest/
https://docs.sonarsource.com/sonarcloud/
https://docs.sonarsource.com/sonarlint/
https://www.sonarsource.com/legal/
https://www.sonarsource.com/trust-center/

© 2008-2025 SonarSource SA. All rights reserved. SONAR, SONARSOURCE, SONARQUBE, and CLEAN AS YOU CODE are trademarks of SonarSource SA.

