
python / cpython Public

zipfile.Path regression #123270
Open obfusk opened this issue last week · 22 comments · Fixed by jaraco/zipp#124

Assignees

jaraco

Labels

3.8 3.9 3.10 3.11 3.12 3.13

3.14 stdlib type-bug

type-security

Projects

 Zipfile issues

Status: Done

Milestone

No milestone

Development

Successfully merging a pull request may
close this issue.

 Restore support for special filenames
jaraco/zipp

4 participants

Code Issues 5k+ Pull requests 1.7k Actions Projects 27 Security

New issue

obfusk commented last week •

Bug report

Bug description:

#122906 introduced a regression with directories that look
like Windows drive letters (on Linux):

This is the result of _sanitize() unconditionally treating
a directory that looks like a drive letter as such and
removing the colon, regardless of operating system:

cpython/Lib/zipfile/_path/__init__.py
Line 141 in 58fdb16

Contributor
edited by bedevere-app bot

>>> import io, zipfile
>>> zf = zipfile.ZipFile(io.BytesIO(), "w")
>>> zf.writestr("d:/foo", "bar")
>>> zf.extractall("a")
>>> open("a/d:/foo").read()
'bar'
>>> p = zipfile.Path(zf)
>>> x = p / "d" / "foo"
>>> y = p / "d:" / "foo"
>>> list(p.iterdir()) # before: [Path(None, 'd:/')
[Path(None, 'd/')]
>>> p.root.namelist() # before: ['d:/foo', 'd:/']
['d/foo', 'd/']
>>> x.exists() # before: False
True
>>> y.exists() # before: True
False
>>> zf.extractall("b") # before: worked like above
KeyError: "There is no item named 'd/foo' in the arc
>>> x.read_text() # before: FileNotFoundError
KeyError: "There is no item named 'd/foo' in the arc
>>> y.read_text() # before: worked
FileNotFoundError: ...

141 bare = re.sub('^([A-Z]):', r'\1', name, fla

https://github.com/python
https://github.com/python/cpython
https://github.com/obfusk
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco
https://github.com/jaraco
https://github.com/python/cpython/labels/3.8
https://github.com/python/cpython/labels/3.9
https://github.com/python/cpython/labels/3.10
https://github.com/python/cpython/labels/3.11
https://github.com/python/cpython/labels/3.12
https://github.com/python/cpython/labels/3.13
https://github.com/python/cpython/labels/3.14
https://github.com/python/cpython/labels/stdlib
https://github.com/python/cpython/labels/type-bug
https://github.com/python/cpython/labels/type-security
https://github.com/orgs/python/projects/7
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco/zipp
https://github.com/jaraco
https://github.com/obfusk
https://github.com/picnixz
https://github.com/ZeroIntensity
https://github.com/python/cpython
https://github.com/python/cpython/issues
https://github.com/python/cpython/pulls
https://github.com/python/cpython/actions
https://github.com/python/cpython/projects
https://github.com/python/cpython/security
https://github.com/python/cpython/pulse
https://github.com/obfusk
https://github.com/python/cpython/pull/122906
https://github.com/python/cpython/blob/58fdb169c8a93925541fecc74ba73c566147f2ca/Lib/zipfile/_path/__init__.py#L141
https://github.com/python/cpython/commit/58fdb169c8a93925541fecc74ba73c566147f2ca
https://github.com/obfusk

Whereas _extract_member() uses os.path.splitdrive()
(which is a no-op on Linux):

cpython/Lib/zipfile/__init__.py
Line 1807 in 58fdb16

CPython versions tested on:

3.12

Operating systems tested on:

Linux

Linked PRs

gh-123270: Replaced SanitizedNames with a
more surgical fix. #123354

[3.13] gh-123270: Replaced SanitizedNames with
a more surgical fix. (GH-123354) #123410

[3.12] gh-123270: Replaced SanitizedNames with
a more surgical fix. (GH-123354) #123411

[3.11] gh-123270: Replaced SanitizedNames with
a more surgical fix. (GH-123354) #123425

[3.10] gh-123270: Replaced SanitizedNames with
a more surgical fix. (GH-123354) #123426

[3.9] gh-123270: Replaced SanitizedNames with
a more surgical fix. (GH-123354) #123432

[3.8] gh-123270: Replaced SanitizedNames with
a more surgical fix. (GH-123354) #123433

1807 arcname = os.path.splitdrive(arcname)[1]

 obfusk added the type-bug label last week

 obfusk mentioned this issue last week

gh-122905: Sanitize names in
zipfile.Path. #122906

 Merged

 obfusk changed the title zipfile.Path regression
with directories that look like Windows drive letters
(on Linux) zipfile.Path regression last week

obfusk commented last week

Paths like foo//bar and foo\\bar also cause issues:

Contributor Author

https://github.com/python/cpython/blob/58fdb169c8a93925541fecc74ba73c566147f2ca/Lib/zipfile/__init__.py#L1807
https://github.com/python/cpython/commit/58fdb169c8a93925541fecc74ba73c566147f2ca
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123411
https://github.com/python/cpython/pull/123411
https://github.com/python/cpython/pull/123411
https://github.com/python/cpython/pull/123425
https://github.com/python/cpython/pull/123425
https://github.com/python/cpython/pull/123425
https://github.com/python/cpython/pull/123426
https://github.com/python/cpython/pull/123426
https://github.com/python/cpython/pull/123426
https://github.com/python/cpython/pull/123432
https://github.com/python/cpython/pull/123432
https://github.com/python/cpython/pull/123432
https://github.com/python/cpython/pull/123433
https://github.com/python/cpython/pull/123433
https://github.com/python/cpython/pull/123433
https://github.com/obfusk
https://github.com/obfusk
https://github.com/python/cpython/labels/type-bug
https://github.com/obfusk
https://github.com/obfusk
https://github.com/python/cpython/pull/122906
https://github.com/python/cpython/pull/122906
https://github.com/python/cpython/pull/122906
https://github.com/obfusk
https://github.com/obfusk
https://github.com/obfusk
https://github.com/obfusk

>>> import io, zipfile
>>> zf = zipfile.ZipFile(io.BytesIO(), "w")
>>> zf.writestr("foo//bar", "text")
>>> zf.namelist()
['foo//bar']
>>> p = zipfile.Path(zf)
>>> p.root.namelist() # before: ['foo//bar', 'foo/
['foo/bar', 'foo/']
>>> x = p / "foo//bar"
>>> y = p / "foo" / "bar"
>>> x.exists() # before: True
False
>>> y.exists() # before: False
True
>>> x.read_text() # before: works, returns 'te
FileNotFoundError: ...
>>> y.read_text() # before: FileNotFoundError
KeyError: "There is no item named 'foo/bar' in the a

>>> import io, zipfile
>>> zf = zipfile.ZipFile(io.BytesIO(), "w")
>>> zf.writestr("foo\\bar", "text")
>>> zf.namelist()
['foo\\bar']
>>> p = zipfile.Path(zf)
>>> p.root.namelist() # before: ['foo\\bar']
['foo/bar', 'foo/']
>>> x = p / "foo\\bar"
>>> y = p / "foo" / "bar"
>>> x.exists() # before: True
False
>>> y.exists() # before: False
True
>>> x.read_text() # before: works, returns 'te
FileNotFoundError: ...
>>> y.read_text() # before: FileNotFoundError
KeyError: "There is no item named 'foo/bar' in the a

ZeroIntensity commented last week

cc @jaraco

Contributor

obfusk commented last week

Sanitising is good. But e.g. .open() will not work if it can't
map back to the original path to pass that to
ZipFile.open() . Though .joinpath() will of course

never use // or \\ , so opening these files already
required constructing the path without using that. Not
sure what's best here if opening files with paths affected
by sanitising is meant to be supported.

Contributor Author

https://github.com/ZeroIntensity
https://github.com/jaraco
https://github.com/obfusk
https://github.com/ZeroIntensity
https://github.com/obfusk

 picnixz added the stdlib label last week

obfusk commented last week Contributor Author

before
>>> import io, os, zipfile
>>> zf = zipfile.ZipFile(io.BytesIO(), "w")
>>> zf.writestr("foo/bar", "one")
>>> zf.writestr("foo\\bar", "two")
>>> zf.namelist()
['foo/bar', 'foo\\bar']
>>> zf.extractall("a")
>>> os.system("tree a")
a
├── foo
│ └── bar
└── foo\bar
>>> p = zipfile.Path(zf)
>>> p.root.namelist()
['foo/bar', 'foo\\bar', 'foo/']
>>> (p / "foo" / "bar").read_text()
'one'
>>> (p / "foo\\bar").read_text()
'two'

after
>>> import io, os, zipfile
>>> zf = zipfile.ZipFile(io.BytesIO(), "w")
>>> zf.writestr("foo/bar", "one")
>>> zf.writestr("foo\\bar", "two")
>>> p = zipfile.Path(zf)
>>> zf.namelist()
['foo/bar', 'foo/bar', 'foo/']
>>> zf.extractall("a")
>>> os.system("tree a")
a
└── foo
 └── bar
>>> (p / "foo" / "bar").read_text()
'one'
>>> (p / "foo\\bar").read_text()
FileNotFoundError: ...

obfusk commented last week

Sanitising is good. But e.g. .open() will not work if it
can't map back to the original path to pass that to
ZipFile.open() . Though .joinpath() will of course

never use // or \\ , so opening these files already
required constructing the path without using that.
Not sure what's best here if opening files with paths
affected by sanitising is meant to be supported.

Contributor Author

https://github.com/picnixz
https://github.com/picnixz
https://github.com/python/cpython/labels/stdlib
https://github.com/obfusk
https://github.com/obfusk
https://github.com/obfusk
https://github.com/obfusk

Keeping a dict mapping sanitised paths back to the
originals might be a good choice. Though .namelist()
will still be "wrong" for the ZipFile (e.g. when calling
.extractall()). And it doesn't handle "duplicates" (see

above).

jaraco commented last week

Not sure what's best here if opening files with paths
affected by sanitising is meant to be supported.

My expectation was that paths affected by sanitizing
would not be supported.

regression with directories that look like Windows
drive letters (on Linux)

My goal is to provide a (perhaps constrained) interface
that's portable and provides consistent behavior
independent of platform.

I'll have to think about this some more

Paths like foo//bar and foo\\bar also cause issues:

I was not expecting that foo\bar or d:/foo were in use
in zip files.

Can you say more about the use-cases that are affected by
these paths? What causes these zip files to exist? What
does the author of such a zip file expect to happen when
consumed by a zipfile client?

Member

obfusk commented 5 days ago •

I was not expecting that foo\bar or d:/foo were in
use in zip files.

Are these file names common? Maybe not. But on Linux
these are perfectly acceptable file names. And whilst they
may indeed cause portability issues for Windows users
and I would thus avoid them when creating ZIP files for
use on Windows, the ZIP format also considers them
perfectly acceptable.

I myself have quite a few music files with odd file names;
song titles can be quite varied. And whilst I've sometimes
run into problems extracting those files on other
operating systems I have never had issues creating or
listing ZIP files.

Contributor Author
edited

https://github.com/jaraco
https://github.com/obfusk
https://github.com/jaraco
https://github.com/obfusk

File names like foo/..//./bar can be considered
malformed and would not be generated by simply
creating a ZIP file from an existing directory tree. But
d:/foo\\bar is not malformed, just unusual (and perhaps

not portable).

Tools like zip and unzip and my own zipinfo.py
handle them just fine. So I would expect the same from
Python. And indeed zipfile.ZipFile handles them just
fine. But zipfile.Path now rejects them.

I generally expect to be able to take any directory tree and
turn it into a ZIP file without having to worry about file
names containing colons or backslashes. Or at the most
that I might need to be careful when extracting them on
Windows. I would not expect to have problems merely
listing the contents, especially when not even using
Windows.

$ mkdir d:
$ echo "Hi!" >> d:/foo\\bar
$ zip -r foo.zip d:
 adding: d:/ (stored 0%)
 adding: d:/foo\bar (stored 0%)
$ unzip -l foo.zip
Archive: foo.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 2024-08-24 04:04 d:/
 4 2024-08-24 04:04 d:/foo\bar
--------- -------
 4 2 files
$ python3 -mzipfile -l foo.zip
File Name
Modified Size
d:/
2024-08-24 04:04:20 0
d:/foo\bar
2024-08-24 04:04:20 4
$ zipinfo.py -e foo.zip
Archive: foo.zip
Zip file size: 308 bytes, number of entries: 2
drwx------ 3.0 unx 0 bx 0 stor
2024-08-24 04:04:20 00000000 d:/
-rw------- 3.0 unx 4 tx 4 stor
2024-08-24 04:04:20 54a8a39c d:/foo\bar
2 files, 4 bytes uncompressed, 4 bytes
compressed: 0.0%

So it is very surprising when zipfile.Path effectively
rejects perfectly valid ZIP files just because they have
"unsupported" file names, especially since it didn't do so
before. I would perhaps expect this kind of backwards-
incompatible change to happen in a major version, given
a good reason, but not in a security patch. And for it to be
clearly documented if the interface is constrained like this.
It also fails in unexpected ways, instead of providing a
clear error message that makes it clear the problem is an
unsupported file name.

obfusk commented 5 days ago

My expectation was that paths affected by sanitizing
would not be supported.

And my expectation would be that such paths would be
either explicitly rejected as malformed if they cannot
reasonably be supported. Or when they can be, handled
gracefully with a portable interface that maps sanitised
names providing a consistent interface that can
reasonably be supported onto the underlying file names
instead of simply causing attempts to read files to fail
because the underlying file name does not match the
sanitised one. And before this change, d:/foo\\bar
worked just fine.

Contributor Author

obfusk commented 5 days ago

This worked perfectly fine before. Now it raises
FileNotFoundError .

And if d:/foo\\bar is not considered a valid path by
zipfile.Path , I'd expect an error. Instead it happily tells

me there is a file named d/foo/bar . Except when I try
reading I get an error that says there is no such file:

Contributor Author

>>> zf = zipfile.ZipFile("foo.zip", "r")
>>> zf.namelist()
['d:/', 'd:/foo\\bar']
>>> p = zipfile.Path(zf)
>>> (p / "d:").is_dir()
True
>>> (p / "d:" / "foo\\bar").read_text()
'Hi!\n'

>>> (p / "d" / "foo" / "bar").is_file()
True
>>> (p / "d" / "foo" / "bar").read_text()
KeyError: "There is no item named 'd/foo/bar' in the

https://github.com/obfusk
https://github.com/obfusk
https://github.com/obfusk
https://github.com/obfusk

obfusk commented 5 days ago

Note that it's not just d:/foo that's no longer allowed,
e.g. V: The New Mythology Suite.flac is now also a
forbidden file name (though extractall() would remove
the "V: " -- but only on Windows, and only when extracting,
not listing files).

Meanwhile, this seems incorrect:

Contributor Author

>>> zipfile._path.SanitizedNames._sanitize("d:/foo")
'd/foo'
>>> zipfile._path.SanitizedNames._sanitize("/d:/foo"
'd:/foo'

obfusk commented 5 days ago

Meanwhile, as I posted here, the only fix needed for the
infinite loop would be the loop condition here:

cpython/Lib/zipfile/_path/__init__.py
Lines 53 to 55 in 52caaef

This should work:

Or this:

Contributor Author

53 while path and path != posixpath.sep:

54 yield path

55 path, tail = posixpath.split(path)

 while path and path != posixpath.sep * len(path)
 yield path
 path, tail = posixpath.split(path)

 while path:
 yield path
 head, tail = posixpath.split(path)
 if head == path:
 break
 path = head

jaraco commented 3 days ago • Memberedited

https://github.com/obfusk
https://github.com/obfusk
https://www.openwall.com/lists/oss-security/2024/08/23/1
https://github.com/python/cpython/blob/52caaef6d01a94962576e9510d982f12c1de20c1/Lib/zipfile/_path/__init__.py#L53-L55
https://github.com/python/cpython/commit/52caaef6d01a94962576e9510d982f12c1de20c1
https://github.com/jaraco
https://github.com/obfusk
https://github.com/obfusk
https://github.com/jaraco

It seems I've stumbled into a hornets nest. When I
received the report about the infinite loops, my objective
was to try to understand the broader problem and not
simply address an issue with the infinite loops. I sought to
figure out why zipfile.extractall was not affected by
the same issue, which led me to the sanitizing behavior
that it applies. I drew inspiration from that in an attempt
to generalize the kinds of unsupported, malformed paths.
At the same time, I took the opportunity to be more
constraining in order to provide a uniform experience on
any platform. As originally designed, zipfile.Path aims
to support basic, commonly constructed zip files.

Note that it's not just d:/foo that's no longer
allowed, e.g. V: The New Mythology Suite.flac is
now also a forbidden file name (though
extractall() would remove the "V: " -- but only on

Windows, and only when extracting, not listing files).

Yeah, that's unfortunate, but I think zipfile.Path does not
wish to support this name because it isn't valid on
commonly-found operating systems... or to support the
name, but in a uniform way. In my opinion, it's more
desirable to have a consistent behavior than to have
varying behavior depending on platform.

On the other hand, supporting this name for traversal on
any operating system should be fine, right up until the
point that these files are manifest on the file system, such
as importlib.resources.as_file does here.

zipfile.Path aims to represent the zipfile in a way that's
safe to "extract all contents" on any platform, which
means it can't expose V: The New Mythology... as any
component of the path.

Meanwhile, this seems incorrect:

Yes, I agree. Probably all colons should be disallowed.

.open() will not work if it can't map back to the
original path to pass that to ZipFile.open()

That's a good point, and not something I considered when
sanitizing, and really suggests that sanitizing early is much
more complicated than it sounds.

Meanwhile, as I posted here, the only fix needed for
the infinite loop would be the loop condition here:

>>> zipfile._path.SanitizedNames._sanitize("d:/f
'd/foo'
>>> zipfile._path.SanitizedNames._sanitize("/d:/
'd:/foo'

https://github.com/python/cpython/blob/bcc1be39cb1d04ad9fc0bd1b9193d3972835a57c/Lib/zipfile/__init__.py#L1799-L1813
https://github.com/python/cpython/blob/bcc1be39cb1d04ad9fc0bd1b9193d3972835a57c/Lib/zipfile/__init__.py#L1799-L1813
https://github.com/python/cpython/blob/dbc1752d4107532d312c78263212e807a3674eb1/Lib/importlib/resources/_common.py#L191-L210
https://www.openwall.com/lists/oss-security/2024/08/23/1

The more I think about it, the more I'm liking this
approach. Leave the path segments unaffected and let
them fail if the user uses a name that's not valid on a
platform. In that way, the path V: The New Mythology
would be valid on any platform and would fail with the
appropriate error if the user tried to "open" that name on
a Windows OS (same for d:/ or /d:/).

The real problem, I think, is that we also want to protect
against other separators, like \ or special names like .. .

Should zipfile.Path consider \ as a path separator?
Looking at the spec:

4.4.17.1 The name of the file, with optional relative
path. The path stored MUST NOT contain a drive or
device letter, or a leading slash. All slashes MUST be
forward slashes '/' as opposed to backwards slashes ''
for compatibility with Amiga and UNIX file systems
etc.

So it seems reasonable to just treat backslashes and dots
and everything else as part of the path segment and not a
path separator, and let the OS fail if anything attempts to
create those as files or directories in the system (e.g.
mkdir('\\') or open('..', 'w')).

I'm now convinced, SanitizedNames should be scrapped
and replaced by a surgical fix for the infinite loop in the
traversal.

1

jaraco commented 3 days ago

In jaraco/zipp#124, I've started work on the issue.

Member

 jaraco self-assigned this 3 days ago

jaraco added a commit to jaraco/zipp that referenced
this issue 3 days ago

Address infinite loop when

zipfile begins with more than

one leading …

9bee3b9

…

Verified

jaraco added a commit to jaraco/zipp that referenced
this issue 3 days ago

https://github.com/python/cpython/issues/123270
https://github.com/jaraco
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco/zipp/commit/9bee3b933f59136043159fc8b08b43acd3ff1952
https://github.com/jaraco/zipp/commit/9bee3b933f59136043159fc8b08b43acd3ff1952
https://github.com/jaraco/zipp/commit/9bee3b933f59136043159fc8b08b43acd3ff1952
https://github.com/jaraco/zipp/commit/9bee3b933f59136043159fc8b08b43acd3ff1952
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco

Address infinite loop when

zipfile begins with more than

one leading …

4aab5e4

…

Verified

 jaraco mentioned this issue 3 days ago

Restore support for special
filenames jaraco/zipp#124

 Merged

jaraco added a commit to jaraco/zipp that referenced
this issue 3 days ago

Address infinite loop when

zipfile begins with more than

one leading …

f89b93f

…

Verified

jaraco commented 3 days ago

This should work:

I tried applying this, and it does address the infinite loop. I
ended up using not path.endswith(posixpath.sep)

In jaraco/zipp@ 0a3a7b4 , I had to adjust the expectation
for .iterdir() - it no longer emits any elements that
begin with forward slashes. I think that's fine. Silently
ignoring malformed paths is better than presenting them
under another name and then not being able to open
them.

1

Member

 while path and path != posixpath.sep * len(p
 yield path
 path, tail = posixpath.split(path)

obfusk commented 3 days ago

So it seems reasonable to just treat backslashes and
dots and everything else as part of the path segment
and not a path separator, and let the OS fail if
anything attempts to create those as files or
directories in the system (e.g. mkdir('\\') or
open('..', 'w')).

Contributor Author

https://github.com/jaraco/zipp/commit/4aab5e4af679733244e4a53bf8698c60821a1c70
https://github.com/jaraco/zipp/commit/4aab5e4af679733244e4a53bf8698c60821a1c70
https://github.com/jaraco/zipp/commit/4aab5e4af679733244e4a53bf8698c60821a1c70
https://github.com/jaraco/zipp/commit/4aab5e4af679733244e4a53bf8698c60821a1c70
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco
https://github.com/jaraco/zipp/commit/f89b93f0370dd85d23d243e25dfc1f99f4d8de48
https://github.com/jaraco/zipp/commit/f89b93f0370dd85d23d243e25dfc1f99f4d8de48
https://github.com/jaraco/zipp/commit/f89b93f0370dd85d23d243e25dfc1f99f4d8de48
https://github.com/jaraco/zipp/commit/f89b93f0370dd85d23d243e25dfc1f99f4d8de48
https://github.com/jaraco
https://github.com/jaraco/zipp/commit/0a3a7b4652e417f61de2458506d05570e22df018
https://github.com/obfusk
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco
https://github.com/obfusk

Using ZipFile.extractall() is safe because it sanitises
the paths when extracting. AFAIK zipfile.Path does not
provide its own interface to extract files, but any code that
traverses the Path and replicates it to disk (like the
importlib code you linked) would need to be careful to

not be vulnerable to path traversal and perhaps try to
gracefully handle filenames not supported by the
operating system (and that would apply to any Path, not
just ZIP files).

I tried applying this, and it does address the infinite
loop. I ended up using not
path.endswith(posixpath.sep)

One of several essentially equivalent fixes (assuming no
change in behaviour of posixpath.split()). Maybe even
the cleanest (I hadn't really decided which I preferred yet)
:)

jaraco commented 3 days ago

One of several essentially equivalent fixes (assuming
no change in behaviour of posixpath.split()).
Maybe even the cleanest (I hadn't really decided
which I preferred yet) :)

I found something I think I like even better:

Because it combines the check for "empty" and "is only
slashes" into one check.

2

Member

diff --git a/zipp/__init__.py b/zipp/__init__.py
index 0b7b44325fe..a3f0b1b481f 100644
--- a/zipp/__init__.py
+++ b/zipp/__init__.py
@@ -65,7 +65,7 @@ def _ancestry(path):
 ['//b//d///f', '//b//d', '//b']
 """
 path = path.rstrip(posixpath.sep)
- while path and not path.endswith(posixpath.sep)
+ while path.rstrip(posixpath.sep):
 yield path
 path, tail = posixpath.split(path)

ZeroIntensity commented 3 days ago Contributor

https://github.com/jaraco
https://github.com/ZeroIntensity
https://github.com/jaraco
https://github.com/ZeroIntensity

Is the plan to revert #122906 from all the security
branches, and just put the fix for this on >3.11? Or is this
going to be backported into all the security-only versions
as well?

jaraco commented 3 days ago

My plan is to apply the change to security-only versions.
Reverting the change would revive the vulnerability.

Member

jaraco commented 3 days ago •

AFAIK zipfile.Path does not provide its own
interface to extract files, but any code that traverses
the Path and replicates it to disk (like the importlib
code you linked) would need to be careful to not be
vulnerable to path traversal and perhaps try to
gracefully handle filenames not supported by the
operating system (and that would apply to any Path,
not just ZIP files).

Thanks for raising this concern. I was thinking about it
too, and here's my thinking:

Because of the way that zipfile.Path represents a tree
and not a list of paths, it doesn't require sanitization.
Thinking about the importlib code, it will start at the
root (or some subpath of the zipfile), and name by name
construct the dirs and files, so it will invoke mkdir("d:")
or open(r"Back\Path", "w") or open(r"..", "w") . Those
operations will succeed on platforms where that's allowed
and fail where not allowed, but it never (?) has the
unintended consequence of causing a user to
unexpectedly traverse to a parent directory or a root
folder, because each path element is encountered in order
and must succeed on mkdir or write_bytes before
traversing further. I'm confident but not certain that
covers all of the bases.

Memberedited

obfusk commented 3 days ago

I agree that the specific code from importlib is likely to be
fine -- assuming mkdir() fails for .. etc. on all platforms
and we didn't overlook anything else. But slightly different
code -- e.g. code that traverses multiple trees that may
overlap and thus uses child.mkdir(exist_ok=True) -- can
easily become vulnerable to path traversal.

Contributor Author

https://github.com/python/cpython/pull/122906
https://github.com/jaraco
https://github.com/jaraco
https://github.com/obfusk
https://github.com/jaraco
https://github.com/jaraco
https://github.com/obfusk

jaraco commented 3 days ago

child.mkdir(exist_ok=True)

Yeah, that does appear potentially problemmatic. I see a
few possible options:

Revive something like SanitizedNames and have the
zipfile.Path object only expose sanitized names

(even for .open and .read* operations). Possibly
make the sanitization platform-sensitive (yuck).

Advertise that zipfile.Path does not do any name
sanitization and it's the responsibility of the caller to
check the inputs, etc.
Emit a warning when encountering potentially unsafe
paths. Maybe configure the warning be an error by
default but allow it to be tuned down to emit an error
message or be silenced.

zipfile.Path could provide its own traversal that could
offer some safety checks.

To be sure, the draft as proposed does still address the
originally-reported vulnerability, so it's not a regression in
security from that perspective, but still it would be nice
not to open up prospects for other vulnerabilities.

Member

 jaraco closed this as completed in jaraco/zipp#124
3 days ago

 jaraco reopened this 3 days ago

 jaraco added type-security 3.11 3.10 3.9 3.8

3.12 3.13 3.14 labels 3 days ago

jaraco added a commit to jaraco/cpython that referenced
this issue 3 days ago

pythongh-123270: Replaced

SanitizedNames with a more

surgical fix.

943a462

…

Verified

https://github.com/jaraco
https://github.com/jaraco
https://github.com/python/cpython/issues?q=is%3Aissue+is%3Aclosed+archived%3Afalse+reason%3Acompleted
https://github.com/jaraco/zipp/pull/124
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco
https://github.com/python/cpython/labels/type-security
https://github.com/python/cpython/labels/3.11
https://github.com/python/cpython/labels/3.10
https://github.com/python/cpython/labels/3.9
https://github.com/python/cpython/labels/3.8
https://github.com/python/cpython/labels/3.12
https://github.com/python/cpython/labels/3.13
https://github.com/python/cpython/labels/3.14
https://github.com/jaraco
https://github.com/python/cpython/issues/123270
https://github.com/jaraco/cpython/commit/943a4627f65b5ad2f407f24cfb68dcf7ecc2dcb8
https://github.com/jaraco/cpython/commit/943a4627f65b5ad2f407f24cfb68dcf7ecc2dcb8
https://github.com/jaraco/cpython/commit/943a4627f65b5ad2f407f24cfb68dcf7ecc2dcb8
https://github.com/jaraco/cpython/commit/943a4627f65b5ad2f407f24cfb68dcf7ecc2dcb8
https://github.com/jaraco
https://github.com/jaraco

jaraco added a commit to jaraco/cpython that referenced
this issue 3 days ago

pythongh-123270: Replaced

SanitizedNames with a more

surgical fix.

55c2795

…

Verified

 bedevere-app bot mentioned this issue 3 days ago

gh-123270: Replaced
SanitizedNames with a more
surgical fix. #123354

 Merged

jaraco commented 3 days ago

The fix has been released in zipp 3.20.1. Please feel free to
try that out and make sure it addresses your use-case
before it lands in CPython.

Member

github-actions bot pushed a commit to aio-
libs/aiohttp that referenced this issue 2 days ago

Bump zipp from 3.20.0 to

3.20.1 (#8914)

eb77a4c
…

Verified

jaraco added a commit that referenced this issue
2 days ago

gh-123270: Replaced

SanitizedNames with a more

surgical fix. (#123354)

2231286

…

Verified

miss-islington pushed a commit to miss-
islington/cpython that referenced this issue 2 days ago

pythongh-123270: Replaced

SanitizedNames with a more surgical

fix. (p…

88e9785

…

miss-islington pushed a commit to miss-
islington/cpython that referenced this issue 2 days ago

pythongh-123270: Replaced

SanitizedNames with a more surgical

fix. (p…

a2ee3af

…

This was referenced 2 days ago

https://github.com/jaraco
https://github.com/python/cpython/issues/123270
https://github.com/jaraco/cpython/commit/55c2795171d21d2bb30d7a30bbdb9c02e61f9b33
https://github.com/jaraco/cpython/commit/55c2795171d21d2bb30d7a30bbdb9c02e61f9b33
https://github.com/jaraco/cpython/commit/55c2795171d21d2bb30d7a30bbdb9c02e61f9b33
https://github.com/jaraco/cpython/commit/55c2795171d21d2bb30d7a30bbdb9c02e61f9b33
https://github.com/apps/bedevere-app
https://github.com/apps/bedevere-app
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/pull/123354
https://github.com/jaraco
https://github.com/apps/github-actions
https://github.com/aio-libs/aiohttp/commit/eb77a4c8fee8cfb0c08f9aa58a5041b8e3579b87
https://github.com/aio-libs/aiohttp/commit/eb77a4c8fee8cfb0c08f9aa58a5041b8e3579b87
https://github.com/aio-libs/aiohttp/pull/8914
https://github.com/aio-libs/aiohttp/commit/eb77a4c8fee8cfb0c08f9aa58a5041b8e3579b87
https://github.com/aio-libs/aiohttp/commit/eb77a4c8fee8cfb0c08f9aa58a5041b8e3579b87
https://github.com/jaraco
https://github.com/python/cpython/issues/123270
https://github.com/python/cpython/commit/2231286d78d328c2f575e0b05b16fe447d1656d6
https://github.com/python/cpython/commit/2231286d78d328c2f575e0b05b16fe447d1656d6
https://github.com/python/cpython/commit/2231286d78d328c2f575e0b05b16fe447d1656d6
https://github.com/python/cpython/pull/123354
https://github.com/python/cpython/commit/2231286d78d328c2f575e0b05b16fe447d1656d6
https://github.com/python/cpython/commit/2231286d78d328c2f575e0b05b16fe447d1656d6
https://github.com/miss-islington
https://github.com/python/cpython/issues/123270
https://github.com/miss-islington/cpython/commit/88e978583c4b9c8bab56dea9ad78502ac115e003
https://github.com/miss-islington/cpython/commit/88e978583c4b9c8bab56dea9ad78502ac115e003
https://github.com/miss-islington/cpython/commit/88e978583c4b9c8bab56dea9ad78502ac115e003
https://github.com/python/cpython/pull/123354
https://github.com/miss-islington/cpython/commit/88e978583c4b9c8bab56dea9ad78502ac115e003
https://github.com/miss-islington
https://github.com/python/cpython/issues/123270
https://github.com/miss-islington/cpython/commit/a2ee3af3fb3bd2bfcc63e327edd59cd6a8211df9
https://github.com/miss-islington/cpython/commit/a2ee3af3fb3bd2bfcc63e327edd59cd6a8211df9
https://github.com/miss-islington/cpython/commit/a2ee3af3fb3bd2bfcc63e327edd59cd6a8211df9
https://github.com/python/cpython/pull/123354
https://github.com/miss-islington/cpython/commit/a2ee3af3fb3bd2bfcc63e327edd59cd6a8211df9
https://github.com/jaraco
https://github.com/jaraco
https://github.com/apps/dependabot
https://github.com/jaraco
https://github.com/miss-islington
https://github.com/miss-islington
https://github.com/jaraco
https://github.com/jaraco

[3.13] gh-123270: Replaced
SanitizedNames with a more
surgical fix. (GH-123354) #123410

 Open

[3.12] gh-123270: Replaced
SanitizedNames with a more
surgical fix. (GH-123354) #123411

 Open

github-actions bot pushed a commit to aio-
libs/aiohttp that referenced this issue yesterday

Bump zipp from 3.20.0 to

3.20.1 (#8923)

b0a97da
…

Verified

jaraco added a commit to jaraco/cpython that referenced
this issue yesterday

[3.11] pythongh-123270:

Replaced SanitizedNames with

a more surgical …

17b77bb

…

Verified

 bedevere-app bot mentioned this issue yesterday

[3.11] gh-123270: Replaced
SanitizedNames with a more
surgical fix. (GH-123354) #123425

 Open

jaraco added a commit to jaraco/cpython that referenced
this issue yesterday

[3.10] [3.11] pythongh-

123270: Replaced

SanitizedNames with a more

su…

c94488e

…

Verified

 bedevere-app bot mentioned this issue yesterday

[3.10] gh-123270: Replaced
SanitizedNames with a more
surgical fix. (GH-123354) #123426

 Open

jaraco added a commit to jaraco/cpython that referenced
this issue yesterday

[3.9] [3.11] pythongh-123270:

Replaced SanitizedNames with

a more sur…

66d3383

…

Verified

https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123410
https://github.com/python/cpython/pull/123411
https://github.com/python/cpython/pull/123411
https://github.com/python/cpython/pull/123411
https://github.com/python/cpython/pull/123411
https://github.com/apps/github-actions
https://github.com/aio-libs/aiohttp/commit/b0a97da9e1a02a1f3f77d04a6b077061b839f096
https://github.com/aio-libs/aiohttp/commit/b0a97da9e1a02a1f3f77d04a6b077061b839f096
https://github.com/aio-libs/aiohttp/pull/8923
https://github.com/aio-libs/aiohttp/commit/b0a97da9e1a02a1f3f77d04a6b077061b839f096
https://github.com/aio-libs/aiohttp/commit/b0a97da9e1a02a1f3f77d04a6b077061b839f096
https://github.com/jaraco
https://github.com/jaraco/cpython/commit/17b77bb41409259bad1cd6c74761c18b6ab1e860
https://github.com/python/cpython/issues/123270
https://github.com/jaraco/cpython/commit/17b77bb41409259bad1cd6c74761c18b6ab1e860
https://github.com/jaraco/cpython/commit/17b77bb41409259bad1cd6c74761c18b6ab1e860
https://github.com/jaraco/cpython/commit/17b77bb41409259bad1cd6c74761c18b6ab1e860
https://github.com/jaraco/cpython/commit/17b77bb41409259bad1cd6c74761c18b6ab1e860
https://github.com/apps/bedevere-app
https://github.com/apps/bedevere-app
https://github.com/python/cpython/pull/123425
https://github.com/python/cpython/pull/123425
https://github.com/python/cpython/pull/123425
https://github.com/python/cpython/pull/123425
https://github.com/jaraco
https://github.com/jaraco/cpython/commit/c94488e79445f5c45d748423e2503e7b4608049d
https://github.com/python/cpython/issues/123270
https://github.com/python/cpython/issues/123270
https://github.com/jaraco/cpython/commit/c94488e79445f5c45d748423e2503e7b4608049d
https://github.com/jaraco/cpython/commit/c94488e79445f5c45d748423e2503e7b4608049d
https://github.com/jaraco/cpython/commit/c94488e79445f5c45d748423e2503e7b4608049d
https://github.com/jaraco/cpython/commit/c94488e79445f5c45d748423e2503e7b4608049d
https://github.com/apps/bedevere-app
https://github.com/apps/bedevere-app
https://github.com/python/cpython/pull/123426
https://github.com/python/cpython/pull/123426
https://github.com/python/cpython/pull/123426
https://github.com/python/cpython/pull/123426
https://github.com/jaraco
https://github.com/jaraco/cpython/commit/66d338361e5ba9d16e21c93bbe2f9cd3b63d4ad1
https://github.com/python/cpython/issues/123270
https://github.com/jaraco/cpython/commit/66d338361e5ba9d16e21c93bbe2f9cd3b63d4ad1
https://github.com/jaraco/cpython/commit/66d338361e5ba9d16e21c93bbe2f9cd3b63d4ad1
https://github.com/jaraco/cpython/commit/66d338361e5ba9d16e21c93bbe2f9cd3b63d4ad1
https://github.com/jaraco/cpython/commit/66d338361e5ba9d16e21c93bbe2f9cd3b63d4ad1
https://github.com/apps/dependabot
https://github.com/jaraco
https://github.com/jaraco
https://github.com/jaraco

 bedevere-app bot mentioned this issue yesterday

[3.9] gh-123270: Replaced
SanitizedNames with a more
surgical fix. (GH-123354) #123432

 Open

jaraco added a commit to jaraco/cpython that referenced
this issue yesterday

[3.8] [3.9] [3.11] pythongh-

123270: Replaced

SanitizedNames with a mo…

dcb320a

…

Verified

 bedevere-app bot mentioned this issue yesterday

[3.8] gh-123270: Replaced
SanitizedNames with a more
surgical fix. (GH-123354) #123433

 Open

https://github.com/apps/bedevere-app
https://github.com/apps/bedevere-app
https://github.com/python/cpython/pull/123432
https://github.com/python/cpython/pull/123432
https://github.com/python/cpython/pull/123432
https://github.com/python/cpython/pull/123432
https://github.com/jaraco
https://github.com/jaraco/cpython/commit/dcb320a0c85713c5dfe89a83d6eb295ad1511be8
https://github.com/python/cpython/issues/123270
https://github.com/python/cpython/issues/123270
https://github.com/jaraco/cpython/commit/dcb320a0c85713c5dfe89a83d6eb295ad1511be8
https://github.com/jaraco/cpython/commit/dcb320a0c85713c5dfe89a83d6eb295ad1511be8
https://github.com/jaraco/cpython/commit/dcb320a0c85713c5dfe89a83d6eb295ad1511be8
https://github.com/apps/bedevere-app
https://github.com/apps/bedevere-app
https://github.com/python/cpython/pull/123433
https://github.com/python/cpython/pull/123433
https://github.com/python/cpython/pull/123433
https://github.com/python/cpython/pull/123433
https://github.com/jaraco

