
Blind SQL injection

What is blind SQL injection?

Blind SQL injection is a type of SQL injection where the
attacker does not receive an obvious response from the
attacked database and instead reconstructs the database
structure step-by-step by observing the behavior of the
database server and the application. Blind SQL injection is
also called inferential SQL injection.

There are two types of blind SQL injections: boolean-based
and time-based.

Consequences of blind SQL
injection

Performing an attack using blind SQL injections takes much
longer than in the case of in-band SQL injections but can yield
the same results. Based on the behavior of the database server
and the application, the attacker may be able to do the
following:

Check if other types of SQL injections are possible

Netsparker is now Invicti

Remote Code Execution (RCE):
Payloads, Commands &
Vulnerabilities

OS Command Injection | Payloads,
prevention, & attacks

Server-Side Request Forgery (SSRF
| Attack Types & Risks

In-band SQL injection

Blind SQL injection

Out-of-band SQL injection

Local file inclusion (LFI)

Remote file inclusion (RFI)

Directory traversal

Cross-site request forgery (CSRF)

CRLF injection

Email injection

HTML injection

NoSQL injection

JSON Injection

Insecure Direct Object References
(IDOR) Vulnerability References

Directory Listing | Risks &
Vulnerabilities Explained

Password reset poisoning

Vulnerabilities

What is an SQL Injection (SQLi)?
Prevention, Examples, Attacks

Cross-Site Scripting (XSS)
Vulnerability Guide

XML external entity (XXE)
Injection | Attack & Examples

Unvalidated redirects and
forwards

Get a demo
AppSec with Zero Noise

https://www.invicti.com/learn/sql-injection-sqli/
https://www.invicti.com/blog/news/netsparker-is-now-invicti-signaling-a-new-era-for-modern-appsec/
https://www.invicti.com/learn/remote-code-execution-rce/
https://www.invicti.com/learn/remote-code-execution-rce/
https://www.invicti.com/learn/remote-code-execution-rce/
https://www.invicti.com/learn/os-command-injection/
https://www.invicti.com/learn/os-command-injection/
https://www.invicti.com/learn/server-side-request-forgery-ssrf/
https://www.invicti.com/learn/server-side-request-forgery-ssrf/
https://www.invicti.com/learn/in-band-sql-injection/
https://www.invicti.com/learn/blind-sql-injection/
https://www.invicti.com/learn/out-of-band-sql-injection-oob-sqli/
https://www.invicti.com/learn/local-file-inclusion-lfi/
https://www.invicti.com/learn/remote-file-inclusion-rfi/
https://www.invicti.com/learn/directory-traversal-path-traversal/
https://www.invicti.com/learn/cross-site-request-forgery-csrf/
https://www.invicti.com/learn/crlf-injection/
https://www.invicti.com/learn/email-injection/
https://www.invicti.com/learn/html-injection/
https://www.invicti.com/learn/nosql-injection/
https://www.invicti.com/learn/json-injection/
https://www.invicti.com/learn/insecure-direct-object-references-idor/
https://www.invicti.com/learn/insecure-direct-object-references-idor/
https://www.invicti.com/learn/directory-listing/
https://www.invicti.com/learn/directory-listing/
https://www.invicti.com/learn/password-reset-poisoning/
https://www.invicti.com/learn/vulnerabilities/
https://www.invicti.com/learn/sql-injection-sqli/
https://www.invicti.com/learn/cross-site-scripting-xss/
https://www.invicti.com/learn/xml-external-entity-xxe/
https://www.invicti.com/learn/unvalidated-redirects-and-forwards/
https://www.invicti.com/get-demo/
https://www.invicti.com/

Get information about the structure of the database

Get data out of the database

What is boolean-based blind SQL
injection?

Boolean-based blind SQL injection is a subtype of blind SQL
injection where the attacker observes the behavior of the
database server and the application after combining
legitimate queries with malicious data using boolean
operators.

Example of boolean-based blind SQL
injection
As an example, let’s assume that the following query is meant
to display details of a product from the database.

At first, a malicious hacker uses the application in a legitimate
way to discover at least one existing product ID – in this
example, it’s product 42. Then, they can provide the following
two values for product_id:

If this query is executed in the application using simple string
concatenation, the query becomes respectively:

If the application behaves differently in each case, it is
susceptible to boolean-based blind SQL injections.

SELECT * FROM products WHERE id = product_id1

42 AND 1=1

42 AND 1=0

1

2

SELECT * FROM products WHERE id = 42 and 1=1

SELECT * FROM products WHERE id = 42 and 1=0

1

2

Buffer overflow

Integer Overflow Guide: Attacks,
Examples, Vulnerabilities

Session Hijacking: Detection,
Defense & Prevention

What is a Session Fixation Attack?
Vulnerabilities, Prevention, and
More

Session prediction

Cookie hijacking

Cookie poisoning

Clickjacking

Forced browsing

XSS filter evasion

Source code disclosure

Host header attacks

Web Cache Poisoning | Cache
Poisoning Attack Explained

Privilege escalation

What is a Web Shell | Types,
Attacks, Detection & Protection

Reverse shell

Cross-frame scripting (XFS)

Broken link hijacking

SEO poisoning

Low Orbit Ion Cannon (LOIC)

High Orbit Ion Cannon (HOIC)

Slowloris attack

R.U.D.Y. attack

Same-origin policy (SOP)

HTTP Strict Transport Security
(HSTS): Example & Fix

Attacks

Man-in-the-middle attacks
(MITM)

Protection

https://www.invicti.com/learn/buffer-overflow-stack-overflow-heap-overflow/
https://www.invicti.com/learn/integer-overflow/
https://www.invicti.com/learn/integer-overflow/
https://www.invicti.com/learn/session-hijacking/
https://www.invicti.com/learn/session-hijacking/
https://www.invicti.com/learn/session-fixation/
https://www.invicti.com/learn/session-fixation/
https://www.invicti.com/learn/session-fixation/
https://www.invicti.com/learn/session-prediction/
https://www.invicti.com/learn/cookie-hijacking/
https://www.invicti.com/learn/cookie-poisoning/
https://www.invicti.com/learn/clickjacking/
https://www.invicti.com/learn/forced-browsing/
https://www.invicti.com/learn/xss-filter-evasion/
https://www.invicti.com/learn/source-code-disclosure/
https://www.invicti.com/learn/host-header-attacks/
https://www.invicti.com/learn/web-cache-poisoning/
https://www.invicti.com/learn/web-cache-poisoning/
https://www.invicti.com/learn/privilege-escalation/
https://www.invicti.com/learn/web-shell/
https://www.invicti.com/learn/web-shell/
https://www.invicti.com/learn/reverse-shell/
https://www.invicti.com/learn/cross-frame-scripting-xfs/
https://www.invicti.com/learn/broken-link-hijacking-blh/
https://www.invicti.com/learn/seo-poisoning/
https://www.invicti.com/learn/low-orbit-ion-cannon-loic/
https://www.invicti.com/learn/high-orbit-ion-cannon-hoic/
https://www.invicti.com/learn/slowloris-attack/
https://www.invicti.com/learn/rudy-attack/
https://www.invicti.com/learn/same-origin-policy-sop/
https://www.invicti.com/learn/http-strict-transport-security-hsts/
https://www.invicti.com/learn/http-strict-transport-security-hsts/
https://www.invicti.com/learn/attacks/
https://www.invicti.com/learn/man-in-the-middle-attacks-mitm/
https://www.invicti.com/learn/protection/

If the database server is Microsoft SQL Server, the attacker
can now supply the following value for product_id:

As a result, the sub-query in parentheses after 42 AND
checks whether the name of the first table in the database
starts with the letter a. If true, the application will behave the
same as for the payload 42 AND 1=1 . If false, the application

will behave the same as for the payload 42 AND 1=0 .

The attacker can iterate through all letters and then go on to
the second letter, third letter, etc. As a result, the attacker can
discover the full name of the first table in the database
structure. They can then try to get more data about the
structure of this table and finally – extract data from the table.
While this example is specific to MS SQL, similar techniques
exist for other database types.

What is time-based blind SQL
injection?

Time-based blind SQL injection is a subtype of blind SQL
injection where the attacker observes the behavior of the
database server and the application after combining
legitimate queries with SQL commands that cause time
delays.

Example of time-based blind SQL
injection

42 AND (SELECT TOP 1 substring(name, 1, 1)

FROM sysobjects

WHERE id=(SELECT TOP 1 id

FROM (SELECT TOP 1 id

FROM sysobjects

ORDER BY id)

AS subq

ORDER BY id DESC)) = 'a'

1

2

3

4

5

6

7

8

Cookie security flags

What is DAST? A Guide to
Dynamic Application Security
Testing

Static Application Security Testing
(SAST) | Tools and Solutions

Interactive Application Security
Testing (IAST) Tools

Software composition analysis
(SCA)

Web application firewall (WAF)

Web asset discovery

Vulnerability management

Vulnerability assessment

Tools

About Invicti Learn

https://www.invicti.com/learn/cookie-security-flags/
https://www.invicti.com/learn/dynamic-application-security-testing-dast/
https://www.invicti.com/learn/dynamic-application-security-testing-dast/
https://www.invicti.com/learn/dynamic-application-security-testing-dast/
https://www.invicti.com/learn/static-application-security-testing-sast/
https://www.invicti.com/learn/static-application-security-testing-sast/
https://www.invicti.com/learn/interactive-application-security-testing-iast/
https://www.invicti.com/learn/interactive-application-security-testing-iast/
https://www.invicti.com/learn/software-composition-analysis-sca/
https://www.invicti.com/learn/software-composition-analysis-sca/
https://www.invicti.com/learn/web-application-firewall-waf/
https://www.invicti.com/learn/web-asset-discovery/
https://www.invicti.com/learn/vulnerability-management/
https://www.invicti.com/learn/vulnerability-assessment/
https://www.invicti.com/learn/tools/
https://www.invicti.com/learn/about/

Let’s say we have the same query as in the example above:

A malicious hacker may provide the following product_id
value:

As a result, the query becomes:

If the database server is Microsoft SQL Server and the
application is susceptible to time-based blind SQL injections,
the attacker will see a 10-second delay in the application.

Now that the attacker knows that time-based blind SQL
injections are possible, they can provide the following
product_id:

If the name of the first table in the database structure begins
with the letter a, the second part of this query will be true, and
the application will react with a 10-second delay. Just like for
boolean-based blind SQL injections above, the attacker can
use this method repeatedly to discover the name of the first
table in the database structure, then try to get more data

SELECT * FROM products WHERE id = product_id1

42; WAITFOR DELAY '0:0:10'1

SELECT * FROM products WHERE id = 1; WAITFOR DELAY '0:0:1

42; IF(EXISTS(SELECT TOP 1 *

FROM sysobjects

WHERE id=(SELECT TOP 1 id

FROM (SELECT TOP 1 id

FROM sysobjects

ORDER BY id)

AS subq

ORDER BY id DESC)

AND ascii(lower(substring(name, 1, 1))) = 'a'))

WAITFOR DELAY '0:0:10'

1

2

3

4

5

6

7

8

9

10

about the table structure of this table and finally extract data
from the table.

How to prevent blind SQL
injection vulnerabilities?

The only fully effective way to prevent all types of SQLi
vulnerabilities in web applications, including blind SQLi, is to
use parameterized queries (also known as prepared
statements) to access SQL databases. If your programming
language does not support parameterized queries but your
database engine supports stored procedures, you may use
stored procedures with prepared statements instead. Relying
purely on other prevention methods such as whitelists,
blacklists, or input filtering/escaping, is not recommended.
Malicious hackers may find a way around such sanitization.

Frequently asked questions

What is blind SQL injection?

What is boolean-based SQL injection?

What is time-based SQL injection?

Related blog posts

What is blind SQL injection?

Written by: Tomasz Andrzej Nidecki, reviewed by: Benjamin Daniel Mussler

https://www.invicti.com/blog/web-security/how-blind-sql-injection-works/
https://www.invicti.com/learn/about/

Invicti Security Corp
1000 N Lamar Blvd Suite 300
Austin, TX 78703, US

© Invicti 2025

RESOURCES

Features

Integrations

Plans

Case Studies

Changelogs

Invicti Learn

USE CASES

Penetration Testing Software

Website Security Scanner

Ethical Hacking Software

Web Vulnerability Scanner

Comparisons

Online Application Scanner

WEB SECURITY

The Problem with False Positives

Why Pay for Web Scanners

SQL Injection Cheat Sheet

Getting Started with Web Security

Vulnerability Index

Content Security Policy (CSP)
Directives, Examples, Fixes

COMPARISON

Acunetix vs. Invicti

Burp Suite vs. Invicti

Checkmarx vs. Invicti

Probely vs. Invicti

Qualys vs. Invicti

Tenable Nessus vs. Invicti

COMPANY

About Us

Contact Us

Support

Careers

Resources

Partners

Compliance Legal Privacy Policy California Privacy Rights Terms of Use Accessibility Sitemap

https://twitter.com/InvictiSecurity
https://twitter.com/InvictiSecurity
https://facebook.com/Invicti-Security-100090617259790/
https://facebook.com/Invicti-Security-100090617259790/
https://www.linkedin.com/company/invicti-security
https://www.linkedin.com/company/invicti-security
https://www.invicti.com/blog/feed/
https://www.invicti.com/blog/feed/
https://www.invicti.com/features/
https://www.invicti.com/integrations/
https://www.invicti.com/plans/
https://www.invicti.com/case-studies/
https://www.invicti.com/changelogs/
https://www.invicti.com/learn/welcome/
https://www.invicti.com/penetration-testing-software/
https://www.invicti.com/website-security-scanner/
https://www.invicti.com/blog/web-security/what-is-ethical-hacking/
https://www.invicti.com/web-vulnerability-scanner/
https://www.invicti.com/vulnerability-scanner-comparison/
https://www.invicti.com/online-web-application-security-scanner/
https://www.invicti.com/blog/web-security/false-positives-web-application-security/
https://www.invicti.com/blog/web-security/comparison-commercial-non-commercial-web-application-security-scanner/
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://www.invicti.com/blog/web-security/getting-started-web-application-security/
https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/
https://www.invicti.com/blog/web-security/content-security-policy/
https://www.invicti.com/blog/web-security/content-security-policy/
https://www.invicti.com/vulnerability-scanner-comparison/invicti-vs-acunetix/
https://www.invicti.com/vulnerability-scanner-comparison/invicti-vs-burp-suite/
https://www.invicti.com/vulnerability-scanner-comparison/invicti-vs-checkmarx/
https://www.invicti.com/vulnerability-scanner-comparison/invicti-vs-probely/
https://www.invicti.com/vulnerability-scanner-comparison/invicti-vs-qualys/
https://www.invicti.com/vulnerability-scanner-comparison/invicti-vs-nessus/
https://www.invicti.com/about/
https://www.invicti.com/contact/
https://www.invicti.com/support/
https://www.invicti.com/careers/
https://www.invicti.com/resources/
https://www.invicti.com/partners/
https://www.invicti.com/compliance/
https://www.invicti.com/legal/
https://www.invicti.com/compliance/privacy-policy/
https://www.invicti.com/compliance/california-privacy-rights/
https://www.invicti.com/legal/terms/
https://www.invicti.com/accessibility/
https://www.invicti.com/sitemap/

