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Unbounded parameter parsing in
`Rack::QueryParser` can lead to memory
exhaustion
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Package

 rack (RubyGems)
Affected versions

< 2.2.14
>= 3.0, < 3.0.16
>= 3.1, < 3.1.14

Patched versions

2.2.14
3.0.16
3.1.14

Description

Summary

Rack::QueryParser  parses query strings and application/x-www-form-
urlencoded  bodies into Ruby data structures without imposing any limit on the
number of parameters, allowing attackers to send requests with extremely large
numbers of parameters.

Details

The vulnerability arises because Rack::QueryParser  iterates over each & -
separated key-value pair and adds it to a Hash without enforcing an upper bound
on the total number of parameters. This allows an attacker to send a single
request containing hundreds of thousands (or more) of parameters, which
consumes excessive memory and CPU during parsing.

Impact

An attacker can trigger denial of service by sending specifically crafted HTTP
requests, which can cause memory exhaustion or pin CPU resources, stalling or
crashing the Rack server. This results in full service disruption until the affected
worker is restarted.

Mitigation

Update to a version of Rack that limits the number of parameters parsed, or

Severity

High / 10
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Attack complexity Low

Privileges required None
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Scope Unchanged

Confidentiality None

Integrity None

Availability High
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CVE ID

CVE-2025-46727
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Use middleware to enforce a maximum query string size or parameter count,
or

Employ a reverse proxy (such as Nginx) to limit request sizes and reject
oversized query strings or bodies.

Limiting request body sizes and query string lengths at the web server or CDN
level is an effective mitigation.


