
rack / rack Public

Unbounded parameter parsing in
`Rack::QueryParser` can lead to memory
exhaustion

High ioquatix published GHSA-gjh7-p2fx-99vx 18 hours ago

Package

 rack (RubyGems)
Affected versions

< 2.2.14
>= 3.0, < 3.0.16
>= 3.1, < 3.1.14

Patched versions

2.2.14
3.0.16
3.1.14

Description

Summary

Rack::QueryParser  parses query strings and application/x-www-form-
urlencoded  bodies into Ruby data structures without imposing any limit on the
number of parameters, allowing attackers to send requests with extremely large
numbers of parameters.

Details

The vulnerability arises because Rack::QueryParser  iterates over each & -
separated key-value pair and adds it to a Hash without enforcing an upper bound
on the total number of parameters. This allows an attacker to send a single
request containing hundreds of thousands (or more) of parameters, which
consumes excessive memory and CPU during parsing.

Impact

An attacker can trigger denial of service by sending specifically crafted HTTP
requests, which can cause memory exhaustion or pin CPU resources, stalling or
crashing the Rack server. This results in full service disruption until the affected
worker is restarted.

Mitigation

Update to a version of Rack that limits the number of parameters parsed, or

Severity

High / 10

CVSS v3 base metrics

Attack vector Network

Attack complexity Low

Privileges required None

User interaction None

Scope Unchanged

Confidentiality None

Integrity None

Availability High

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/
S:U/C:N/I:N/A:H

CVE ID

CVE-2025-46727

Weaknesses

CWE-400  CWE-770

Credits

 TaiPhung217 Reporter

jeremyevans
Remediation develo

 ioquatix Coordinator

Code Issues 16 Pull requests 5 Discussions Actions Projects Wiki S

7.5

Learn more about base
metrics

https://github.com/rack
https://github.com/rack/rack
https://github.com/ioquatix
https://github.com/advisories?query=ecosystem%3Arubygems
https://github.com/advisories?query=cwe%3A400
https://github.com/advisories?query=cwe%3A770
https://github.com/TaiPhung217
https://github.com/TaiPhung217
https://github.com/jeremyevans
https://github.com/jeremyevans
https://github.com/ioquatix
https://github.com/ioquatix
https://github.com/rack/rack
https://github.com/rack/rack/issues
https://github.com/rack/rack/pulls
https://github.com/rack/rack/discussions
https://github.com/rack/rack/actions
https://github.com/rack/rack/projects
https://github.com/rack/rack/wiki
https://github.com/rack/rack/security


Use middleware to enforce a maximum query string size or parameter count,
or

Employ a reverse proxy (such as Nginx) to limit request sizes and reject
oversized query strings or bodies.

Limiting request body sizes and query string lengths at the web server or CDN
level is an effective mitigation.


