
+22 −1

iputils / iputils Public

ping: Fix signed 64-bit integer overflow in
RTT calculation #585

 Open pevik wants to merge 1 commit into from

 Conversation 17 Commits 1 Checks 16 Files changed 2

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may
close these issues.

 Signed 64-bit integer overflow in RTT …

4 participants

Code Issues 51 Pull requests 15 Actions Projects Wiki Security

New issue

iputils:master pevik:CVE-2025-47268

pevik commented 16 hours ago

Crafted ICMP Echo Reply packet can cause signed integer
overflow in

Contributor

1. triptime calculation:
triptime = tv->tv_sec * 1000000 + tv->tv_usec;

2. tsum2 increment which uses triptime
rts->tsum2 += (double)((long long)triptime * (long
long)triptime);

3. final tmvar:
tmvar = (rts->tsum2 / total) - (tmavg * tmavg)

$ export CFLAGS="-O1 -g -fsanitize=address,undefined
-fno-omit-frame-pointer"
$ export LDFLAGS="-fsanitize=address,undefined -fno-
omit-frame-pointer"
$ meson setup .. -Db_sanitize=address,undefined
$ ninja
$./ping/ping -c2 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64
time=0.061 ms
../ping/ping_common.c:757:25: runtime error: signed
integer overflow: -2513732689199106 * 1000000 cannot
be represented in type 'long int'
../ping/ping_common.c:757:12: runtime error: signed
integer overflow: -4975495174606980224 +
-6510615555425289427 cannot be represented in type
'long int'
../ping/ping_common.c:769:47: runtime error: signed
integer overflow: 6960633343677281965 *
6960633343677281965 cannot be represented in type
'long int'

Reviewers

nmeyerhans

metan-ucw

Zephkek

https://github.com/iputils
https://github.com/iputils/iputils
https://github.com/pevik
https://github.com/iputils/iputils/pull/585
https://github.com/iputils/iputils/pull/585/commits
https://github.com/iputils/iputils/pull/585/checks
https://github.com/iputils/iputils/pull/585/files
https://github.com/iputils/iputils/issues/584
https://github.com/pevik
https://github.com/nmeyerhans
https://github.com/metan-ucw
https://github.com/Zephkek
https://github.com/iputils/iputils
https://github.com/iputils/iputils/issues
https://github.com/iputils/iputils/pulls
https://github.com/iputils/iputils/actions
https://github.com/iputils/iputils/projects
https://github.com/iputils/iputils/wiki
https://github.com/iputils/iputils/security
https://github.com/iputils/iputils/pulse
https://github.com/iputils/iputils/tree/master
https://github.com/iputils/iputils/tree/master
https://github.com/iputils/iputils/tree/master
https://github.com/pevik/iputils/tree/CVE-2025-47268
https://github.com/pevik/iputils/tree/CVE-2025-47268
https://github.com/pevik/iputils/tree/CVE-2025-47268
https://github.com/pevik
https://github.com/nmeyerhans
https://github.com/nmeyerhans
https://github.com/iputils/iputils/pull/585/files/3c7b468a3ba6179e172c4dbfd402d2c649301800
https://github.com/metan-ucw
https://github.com/metan-ucw
https://github.com/iputils/iputils/pull/585/files/4c799c7724078309905588837dfe4e4232debb2e
https://github.com/Zephkek
https://github.com/Zephkek
https://github.com/iputils/iputils/pull/585/files/23db9b0806b49276bde82d5501ceec22afd651a0
https://github.com/pevik

To fix the overflow check allowed ranges of struct timeval
members:

Fix includes 2 new error messages (needs translation).

After fix:

24 bytes from 127.0.0.1: icmp_seq=1 ttl=64
(truncated)
./ping/ping: Warning: time of day goes back
(-7256972569576721377us), taking countermeasures
./ping/ping: Warning: time of day goes back
(-7256972569576721232us), taking countermeasures
24 bytes from 127.0.0.1: icmp_seq=1 ttl=64
(truncated)
../ping/ping_common.c:265:16: runtime error: signed
integer overflow: 6960633343677281965 * 2 cannot be
represented in type 'long int'
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64
time=0.565 ms

--- 127.0.0.1 ping statistics ---
2 packets transmitted, 2 received, +2 duplicates, 0%
packet loss, time 1002ms
../ping/ping_common.c:940:42: runtime error: signed
integer overflow: 1740158335919320832 *
1740158335919320832 cannot be represented in type
'long int'
rtt min/avg/max/mdev =
0.000/1740158335919320.832/6960633343677281.965/-162351
ms

tv_sec <-LONG_MAX/1000000, LONG_MAX/1000000>

tv_usec <0, 999999>

$./ping/ping -c2 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64
time=0.059 ms
./ping/ping: Warning: overflow tv_usec
-6510615555425457380 us
./ping/ping: Warning: invalid tv_sec
-1789369274859522 s
24 bytes from 127.0.0.1: icmp_seq=1 ttl=64
(truncated)
./ping/ping: Warning: overflow tv_usec
-6510615555425413387 us
./ping/ping: Warning: invalid tv_sec
-2006106209517570 s
24 bytes from 127.0.0.1: icmp_seq=1 ttl=64
(truncated)
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64
time=0.118 ms

--- 127.0.0.1 ping statistics ---
2 packets transmitted, 2 received, +2 duplicates, 0%

: #584
Fixes: CVE-2025-472
Link: https://github.com/Zephkek/ping-rtt-overflow/
Co-developed-by: Cyril Hrubis chrubis@suse.cz
Reported-by: Mohamed Maatallah
hotelsmaatallahrecemail@gmail.com

packet loss, time 1002ms
rtt min/avg/max/mdev = 0.000/0.044/0.118/0.048 ms

Fixes

 pevik mentioned this pull request 16 hours ago

Signed 64-bit integer overflow in RTT
calculation #584

Open

 pevik requested a review from a team 16 hours ago

nmeyerhans reviewed
15 hours ago

View reviewed changes

ping/ping_common.c Outdated

766 }+
767 +
768 /* 1000001 = 1000000 tv+
769 if (tv->tv_sec > LONG_M+

 nmeyerhans 15 hours ago

It might be nice to give a name to
LONG_MAX/1000001 , maybe with #define ?

1

Contributor

 Zephkek 15 hours ago •

Something like this would be nice:

These replace magic numbers and create a clear
boundary for detecting integer overflow when
converting time units.

edited

#define USEC_PER_SEC 1000000
#define USEC_MAX (USEC_PER_SEC - 1)
#define SEC_SAFE_MAX (LONG_MAX / (USEC_PER_SE

 pevik 15 hours ago Contributor Author

https://github.com/iputils/iputils/issues/584
https://github.com/Zephkek/ping-rtt-overflow/
mailto:chrubis@suse.cz
mailto:hotelsmaatallahrecemail@gmail.com
https://github.com/pevik
https://github.com/pevik
https://github.com/iputils/iputils/issues/584
https://github.com/iputils/iputils/issues/584
https://github.com/iputils/iputils/issues/584
https://github.com/pevik
https://github.com/pevik
https://github.com/nmeyerhans
https://github.com/iputils/iputils/pull/585/files
https://github.com/iputils/iputils/pull/585/files#diff-9c079e556f51f0f9fe36f2065c1df17a64dc3b1395ac10b37df938f310e7b7a6
https://github.com/nmeyerhans
https://github.com/Zephkek
https://github.com/pevik
https://github.com/nmeyerhans

Although the other 2 definitions make sense, I
would prefer to postpone adding them later after
this is fixed (it's an unrelated cleanup - 1000000
should be used on more places not just here).

 pevik force-pushed the branch 2 times,
most recently from d17b6d0 to 23db9b0
15 hours ago

CVE-2025-47268

Compare

pevik commented 9 hours ago

Please, when you're finish with your review, add your
Reviewed-by: or Acked-by: tag.

Contributor Author

 pevik requested a review from a team 8 hours ago

metan-ucw reviewed 8 hours ago View reviewed changes

ping/ping_common.c

765 tv->tv_usec = 0+
766 }+
767 +
768 if (tv->tv_sec > TV_SEC+

 metan-ucw 8 hours ago

Isn't tv->tv_sec < 0 invalid anyway? That would
mean that the packet traveled back in time.

Contributor

 pevik 8 hours ago •

It makes sense, but IMHO this is handled later this
part:

iputils/ping/ping_common.c
Lines 758 to 766 in 3bb2d73

Contributor Author
edited

758 if (triptime < 0) {

759 error(0, 0, _("Warning:

time of day goes back (%ldus),

taking countermeasures"),

triptime);

760 triptime = 0;

761 if (!rts->opt_latency) {

762 gettimeofday(tv,

NULL);

https://github.com/pevik
https://github.com/iputils/iputils/compare/d17b6d03bbe5bbd115a7f0b2e5ad1c77de4fd1d2..23db9b0806b49276bde82d5501ceec22afd651a0
https://github.com/iputils/iputils/commit/d17b6d03bbe5bbd115a7f0b2e5ad1c77de4fd1d2
https://github.com/iputils/iputils/commit/23db9b0806b49276bde82d5501ceec22afd651a0
https://github.com/pevik
https://github.com/iputils/iputils/compare/d17b6d03bbe5bbd115a7f0b2e5ad1c77de4fd1d2..23db9b0806b49276bde82d5501ceec22afd651a0
https://github.com/pevik
https://github.com/pevik
https://github.com/pevik
https://github.com/metan-ucw
https://github.com/iputils/iputils/pull/585/files
https://github.com/iputils/iputils/pull/585/files#diff-9c079e556f51f0f9fe36f2065c1df17a64dc3b1395ac10b37df938f310e7b7a6
https://github.com/metan-ucw
https://github.com/pevik
https://github.com/iputils/iputils/blob/3bb2d7302618d8c3708d3c93adcd90f342f5b6dc/ping/ping_common.c#L758-L766
https://github.com/iputils/iputils/commit/3bb2d7302618d8c3708d3c93adcd90f342f5b6dc
https://github.com/pevik
https://github.com/metan-ucw

I also wondered if I should move it to handle it via
tv->tv_sec < 0 as we now sanitize tv->tv_usec

(I guess we should keep time of day goes back
warning message for it). But how about if (!rts-
>opt_latency) { ... } part? Is it relevant for
crafted RTT values as well?

763 rts->opt_latency

= 1;

764 goto restamp;

 metan-ucw 8 hours ago

At the start of the gather_statistics() we do
tv_sub() where we calculate the difference

between the time we send the packet and the time
we received a reply. We have no way knowing if we
got negative value because of wall clock change or
because of a crafted value.

And in the case of the crafted value the problem is
even worse, I guess that if we send a timestamp
that is ahead by hours ping will get stuck in the
loop, trying to restamp it for hours consuming
100% of CPU time. It would make more sense to
discard such sample from the statistics.

So I would do:

Remove the restamp goto
Check for negative value right in the tv_sec
and set triptime to 0 if it was negative

Skip the part where we add to the rts->tsum if
triptime == 0

Contributor

 metan-ucw 7 hours ago

Ah I was blind, we actually use rts->opt_latency to
guard against infinite loop. However the
restamping is still questionable, we are not getting
a good sample by pretending it arrived a tiny bit
later.

Also idea for a future, we should switch to
CLOCK_MONOTONIC timer that is not going to go

backwards unlike the wall clock.

Contributor

 Zephkek 7 hours ago • edited

https://github.com/metan-ucw
https://github.com/metan-ucw
https://github.com/Zephkek

Load more…

Using CLOCK_MONOTONIC for send times seems
practical initially, potentially obtaining a timespec
but converting to timeval for the ICMP payload.
This mainly improves the reliability of RTTs at the
current microsecond precision by avoiding wall-
clock issues.

For receive times, kernel monotonic timespec
timestamps (via
SO_TIMESTAMPNS / SO_TIMESTAMPING) would be

ideal, with user-space
clock_gettime(CLOCK_MONOTONIC) post- recvmsg

as a fallback.

This isolates RTT from wall-clock changes, yielding
more reliable results.

 metan-ucw 5 hours ago

No need for the else branch, we can do:

Apart from that it does sound like a plan to me.
Let's limit the changes for this particular fix and
then do a bigger cleanup once this is dealt with.

Contributor

 if (tv->tv_sec > TV_SEC_MAX_VAL) {

 }

 if (tv->tv_sec < 0) {

 }

 pevik 4 hours ago

The only thing is that keeping also negative
separate

e.g. to have final code

Contributor Author

if (tv->tv_sec > TV_SEC_MAX_VAL || tv->tv_sec
 /* underflow or overflow => likely crafte
} else if (triptime < 0) {
 /*
 * Negative value but small enough to be
 * => I would keep the warning about time
 */
}

https://github.com/metan-ucw
https://github.com/pevik

Or you meant something different?

restamp:
tvsub(tv, &tmp_tv);

if (tv->tv_usec >= 1000000) {
error(0, 0, _("Warnin
tv->tv_usec = 999999;

}

if (tv->tv_usec < 0) {
error(0, 0, _("Warnin
tv->tv_usec = 0;

}

if (tv->tv_sec > TV_SEC_MAX_V
error(0, 0, _("Warnin
triptime = 0;

} else if (tv->tv_sec < 0) {
error(0, 0, _("Warnin
triptime = 0;
if (!rts->opt_latency

gettimeofday(
rts->opt_late
goto restamp;

}
} else {

triptime = tv->tv_sec
}

if (!csfailed) {
...

 metan-ucw 4 hours ago •

You left in the || tv->tv_sec < -TV_SEC_MAX_VAL
that shouldn't be needed because we without that
we would end up in the if (tv->tv_sec < 0)
branch. Otherwise it looks good.

Contributoredited

 pevik 4 hours ago

That was deliberate: e.g. first check for long int
overflow (outside of range: <-9223362813491,
9223362813491>), then check for smaller negative
value in range <-9223362813490, 0) which could
be also time back. I think that <-9223362813490,
0) is very long interval, but do you really consider
not checking for invalid negative range useful?
Because the crafting script sets: tv->tv_sec:
-2601281302560770, tv->tv_usec:

-6510615555425262901 . Therefore the output has:

Contributor Author

https://github.com/metan-ucw
https://github.com/pevik

(Maybe tv->tv_usec could have error message
just invalid tv_usec - not specify
overflow/underflow. Or, if kept, then tv->tv_sec
should also specify overflow/underflow).

./ping/ping: Warning: overflow tv_usec
-6510615555425218641 us
./ping/ping: Warning: invalid tv_sec
-2821724793995266 s

 metan-ucw 2 hours ago •

If we are not doing to do the multiplication in the
case that tv_sec < 0 then there is no point in
checking for underflow and no point in treating
some negative numbers differently. At least that is
my reasoning why there is no need to treat a
subset of negative numbers differently.

1

Contributoredited

ping: Fix signed 64-bit integer

overflow in RTT calculation

4c799c7
…

Verified

 pevik force-pushed the branch from
23db9b0 to 4c799c7 5 hours ago

CVE-2025-47268

Compare

pevik commented 5 hours ago

Branch rebased.

Contributor Author

nmeyerhans commented 31 minutes ago

Please, when you're finish with your review, add your
Reviewed-by: or Acked-by: tag.

Acked in c03bb27 in my fork

Contributor

https://github.com/metan-ucw
https://github.com/iputils/iputils/pull/585/commits/4c799c7724078309905588837dfe4e4232debb2e
https://github.com/iputils/iputils/pull/585/commits/4c799c7724078309905588837dfe4e4232debb2e
https://github.com/iputils/iputils/pull/585/commits/4c799c7724078309905588837dfe4e4232debb2e
https://github.com/pevik
https://github.com/iputils/iputils/compare/23db9b0806b49276bde82d5501ceec22afd651a0..4c799c7724078309905588837dfe4e4232debb2e
https://github.com/iputils/iputils/commit/23db9b0806b49276bde82d5501ceec22afd651a0
https://github.com/iputils/iputils/commit/4c799c7724078309905588837dfe4e4232debb2e
https://github.com/pevik
https://github.com/iputils/iputils/compare/23db9b0806b49276bde82d5501ceec22afd651a0..4c799c7724078309905588837dfe4e4232debb2e
https://github.com/pevik
https://github.com/nmeyerhans
https://github.com/iputils/iputils/commit/c03bb2744966266ff1ef255c9220e7759243e803
https://github.com/pevik
https://github.com/pevik
https://github.com/nmeyerhans

