
+40 −2

mojolicious / mojo Public

pad session values to 1025 bytes by default
#1791

 Merged mergify merged 1 commit into from on Jun 2, 2021

 Conversation 15 Commits 1 Checks 0 Files changed 2

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may
close these issues.

None yet

9 participants

Code Issues 75 Pull requests 27 Discussions Actions Projects Wiki

New issue

main pad_session

jberger commented on Jun 2, 2021

Pad the session value to at least 1025 bytes. This should
prevent a small value from being used as part of a brute-
force attack to decode the session secret.

1

Member

Grinnz commented on Jun 2, 2021

If the padding byte doesn't matter I'd prefer to use
something more indicative like null bytes maybe?

Contributor

pad session values to 1025 bytes by

default

c99dee4

 jberger force-pushed the branch from
04984ca to c99dee4 4 years ago

pad_session

Compare

jberger commented on Jun 2, 2021

If the padding byte doesn't matter I'd prefer to use
something more indicative like null bytes maybe?

I suppose that could work since it is base64 encoded.
Originally I did think about null, but I chose a text character
because I was worried about how it would interact with the
HTTP protocol etc, but on reflection that doesn't matter once
base64 encoded. Anyway, I don't care what the padding is. In
theory it could be random as long as it isn't } (by this
implementation).

Member Author

Reviewers

kraih

jhthorsen

https://github.com/mojolicious
https://github.com/mojolicious/mojo
https://github.com/apps/mergify
https://github.com/mojolicious/mojo/pull/1791
https://github.com/mojolicious/mojo/pull/1791/commits
https://github.com/mojolicious/mojo/pull/1791/checks
https://github.com/mojolicious/mojo/pull/1791/files
https://github.com/jberger
https://github.com/Grinnz
https://github.com/latk
https://github.com/CarterSScott
https://github.com/stigtsp
https://github.com/jkramarz
https://github.com/s1037989
https://github.com/kraih
https://github.com/jhthorsen
https://github.com/mojolicious/mojo
https://github.com/mojolicious/mojo/issues
https://github.com/mojolicious/mojo/pulls
https://github.com/mojolicious/mojo/discussions
https://github.com/mojolicious/mojo/actions
https://github.com/mojolicious/mojo/projects
https://github.com/mojolicious/mojo/wiki
https://github.com/mojolicious/mojo/tree/main
https://github.com/mojolicious/mojo/tree/main
https://github.com/mojolicious/mojo/tree/pad_session
https://github.com/mojolicious/mojo/tree/pad_session
https://github.com/jberger
https://github.com/Grinnz
https://github.com/mojolicious/mojo/pull/1791/commits/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/mojolicious/mojo/pull/1791/commits/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/mojolicious/mojo/pull/1791/commits/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jberger
https://github.com/mojolicious/mojo/compare/04984ca36d6ee1a052502cc84b9a62fa02f37a34..c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/mojolicious/mojo/commit/04984ca36d6ee1a052502cc84b9a62fa02f37a34
https://github.com/mojolicious/mojo/commit/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jberger
https://github.com/mojolicious/mojo/compare/04984ca36d6ee1a052502cc84b9a62fa02f37a34..c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jberger
https://github.com/kraih
https://github.com/kraih
https://github.com/mojolicious/mojo/pull/1791/files/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jhthorsen
https://github.com/jhthorsen
https://github.com/mojolicious/mojo/pull/1791/files/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jberger
https://github.com/Grinnz
https://github.com/jberger
https://github.com/jberger

Grinnz commented on Jun 2, 2021 •

The other option is to do this padding after the serialization
and base64 so it happens regardless of the serializer. It would
have to be some bytes that are not valid in base64 but are
valid in cookie values (punctuation other than ",;\/+=
would work).

Contributoredited

 kraih requested a review from a team 4 years ago

kraih approved these changes
on Jun 2, 2021

View reviewed changes

jhthorsen approved these changes
on Jun 2, 2021

View reviewed changes

jhthorsen left a comment

I think this is a very clever solution 👍

Member

 mergify bot merged commit 2ac681a into
on Jun 2, 2021

main

 jhthorsen deleted the branch 4 years agopad_session

 stigtsp mentioned this pull request on Jun 4, 2021

perlPackages.Mojolicious: 9.17 -> 9.19
NixOS/nixpkgs#125618

 Merged

9 tasks

latk commented on Oct 30, 2022

I am trying to understand the rationale of this change
(prompted by a Stack Overflow question). The stated purpose
of this change is to make brute-force key recovery attacks
more difficult, by padding the cookie payload until it is at
least 1025 bytes long. The length seems to have been chosen
arbitrarily. The padded cookie value is later used in
Controller.pm as input for a HMAC:

https://github.com/Grinnz
https://github.com/kraih
https://github.com/kraih
https://github.com/kraih
https://github.com/mojolicious/mojo/pull/1791/files/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jhthorsen
https://github.com/mojolicious/mojo/pull/1791/files/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/jhthorsen
https://github.com/apps/mergify
https://github.com/mojolicious/mojo/commit/2ac681a47750d3b293be8ec0eb22512e8fc6b93f
https://github.com/apps/mergify
https://github.com/jhthorsen
https://github.com/jhthorsen
https://github.com/stigtsp
https://github.com/stigtsp
https://github.com/NixOS/nixpkgs/pull/125618
https://github.com/NixOS/nixpkgs/pull/125618
https://github.com/latk
https://stackoverflow.com/questions/74245591/mojolicious-weird-cookies
https://github.com/Grinnz
https://github.com/kraih
https://github.com/jhthorsen
https://github.com/latk

I think the change in this PR fails to achieve its stated
purpose:

1. The difficulty of a brute-force attack depends on the
entropy of the input, not directly on its length. Adding
deterministic padding does not add entropy, and
therefore does not make brute-force attacks more
difficult. At most, increasing the input length produces a
linear slowdown.

2. As far as I understand HMACs, the difficulty of a key
recovery attack depends only on the strength of the
secret key, up to the limit imposed by the hash function's
internal size. The difficulty for key recovery does not
depend on the size of the plaintext message, which is
known to the attacker. For the same reason, using bytes
from a CSPRNG for padding the message as a kind of salt
would not help.

If my understanding happens to be correct, it could make
sense to revert this change. The primary effect of this PR
seems to be increased bandwidth usage for users, not
increased security. If this padding is still desired, it could be
added just before the HMAC calculation, without carrying it
around in the cookie.

Towards the goal of defending against brute-force attacks,
other mechanisms might be more helpful – such as
extending the documentation for Mojolicious' secrets to
explain how to generate secrets with sufficiently high entropy
(e.g. head -c 32 /dev/urandom | base64 or openssl rand -
base64 32). NIST recommends key lengths of at least 112 bits
for HMACs. I would also mention that secrets would ideally be
provided by the deployment environment, and never written
into the application's source code.

3

 my $sum = Digest::SHA::hmac_sha256_hex("$name=$value"
 return $self->cookie($name, "$value--$sum", $options)

(Since the HMAC maintains its security properties regardless of the changes in this

PR, this is not a vulnerability. I therefore commented here instead of going

through the vulnerability disclosure process.)

jberger commented on Nov 1, 2022 Member Author

https://doi.org/10.6028/NIST.SP.800-131Ar2
https://github.com/jberger
https://github.com/jberger

It was a very specific brute force attack. I don't know if we're
mentioning which openly but a common tool could be used if
the encrypted message was short enough. Meanwhile you
have to be able to strip it out easily and not cost too much
performance since this happens a lot

1

CarterSScott commented on Feb 1, 2023

I ran into an issue where I was trying to access the cookie
that the session generates directly through the signed_cookie
method. The padded Z's were still there and I had to write
some regex to remove them. Should there be some sort of
check in place for the signed_cookie method to remove these
padded Z's?

stigtsp commented on Mar 19, 2023

It was a very specific brute force attack. [..]

Hi! Would you mind sharing some details about this attack?

jkramarz commented on Sep 26, 2024

Hi all! I'm quite surprised by existence of an elegant Perl web
framework and, this project's maturity and good
documentation.
It's my first time here, I'm a security researcher who
encountered it during one of our missions, just like
@cervoise, who inspired this merge request with his article.

As described by @jberger in his blog post, the default secret
for the application is both predictable and constant for
particular application. It definitely eases work while in
development and facilitate test deployments on multiple
server instances behind a load balancer.

In the same time, "Your secret passphrase needs to be
changed" in application log is the only sign that somebody
overlooked configuring a proper secret in the production
environment. As described by @latk in previous comment, in
the current implementation the signature is as secure as the
chosen secret.

https://github.com/CarterSScott
https://github.com/stigtsp
https://github.com/jkramarz
https://github.com/cervoise
https://www.synacktiv.com/publications/baking-mojolicious-cookies
https://github.com/jberger
https://mojolicious.io/blog/2017/12/16/day-16-the-secret-life-of-sessions/
https://github.com/latk
https://github.com/CarterSScott
https://github.com/stigtsp
https://github.com/jkramarz

Unfortunately, it seems that changes introduced in c99dee4
were specifically targeted on breaking input validation of
hashcat cracking module for bare HMAC signature. It is now
more difficult to validate that application was configured
properly, unless you decide that the cookie is actually a bit
malformed HMAC-SHA256 signed JWT and crack it as such with
a bit of code fiddling. As it effectively created a new format of
signature, not more and not less secure, but one that just
requires slightly different handling, I'm letting you know
before submitting a merge request to hashcat.

3

s1037989 commented on Sep 26, 2024 via email

Hi! Thanks for reaching out to discuss this! I'm just a
community member
myself, but appreciate the topic. Are you saying that you're
warning the
Mojolicious team that their security measure is about to have
a cracking
tool released to the world? And, regardless, do you have a
suggestion for
what could be done to improve the framework? Is the
reported issue only the
simple default password, or is there another problem that
should be solved
with some superior technique?

…

Contributor

jkramarz commented on Sep 26, 2024 •

@s1037989, more like notifying that strapping together parts
of existing modules with duct tape and bubble gum works
just fine for cracking the signatures in efficient way.

Not sure when the token signatures switched from HMAC-
SHA1 to HMAC-SHA256 (it predates this merge request), but
since then it were already fine. Solution implemented here,
while clever in what it achieves, in my opinion does not
directly increase security of the tokens. It is equal to HMAC-
SHA256 signed JWT, without usual JWT-specific attacks.

edited

https://github.com/mojolicious/mojo/commit/c99dee43f62ac5d552208ebf494f11474709efda
https://github.com/s1037989
https://github.com/jkramarz
https://github.com/s1037989
https://github.com/s1037989
https://github.com/jkramarz

If the idea of environments (e.g. like in Ruby on Rails,
RAILS_ENV=production , with separate configuration) is

present here, so there is some determinant sufficient to
decide that the app is no longer in development, and it would
be possible to prevent running application without secret
configured - I would call it a day.

Grinnz commented on Sep 26, 2024

There is a production mode, which can be set manually or by
running the application with the hypnotoad application
server. It may be reasonable to refuse to start in production
mode without a configured secret, but that deserves its own
issue/discussion.

Contributor

kraih commented on Sep 27, 2024

Maybe also worth mentioning that the app generator
shipping with Mojolicious does generate a config file with
secret:

mojo/lib/Mojolicious/Command/Author/generate/app.pm
Line 202 in ecb44cf

Should those be longer by default too?

Member

202 - <%= sha1_sum $$. steady_time . rand %>

jkramarz commented on Sep 27, 2024 •

@kraih, it is definitely less predictable, let's say good enough
to not call it a "default value" and ditch dictionary attack
attempts.

But back to the question: I don’t have formal education in
cryptography, so let's try to refer to some more respected
sources:

In RFC 2104 (HMAC: Keyed-Hashing for Message
Authentication) section 3 says that:

edited

https://github.com/Grinnz
https://github.com/kraih
https://github.com/mojolicious/mojo/blob/ecb44cf8b1ec11402e28aac1e2a3224d505e95c4/lib/Mojolicious/Command/Author/generate/app.pm#L202
https://github.com/mojolicious/mojo/commit/ecb44cf8b1ec11402e28aac1e2a3224d505e95c4
https://github.com/jkramarz
https://github.com/kraih
https://github.com/Grinnz
https://github.com/kraih
https://github.com/jkramarz

The key for HMAC can be of any length (keys longer than
B bytes are
first hashed using H). However, less than L bytes is
strongly
discouraged as it would decrease the security strength
of the
function. Keys longer than L bytes are acceptable but the
extra
length would not significantly increase the function
strength. (A
longer key may be advisable if the randomness of the
key is
considered weak.)

Output length L of HMAC-SHA256 is 256 bits, so it seems that
256-bit long secret is desirable.

The same stands in NIST Special Publication 800-107
(Recommendation for Applications Using Approved Hash
Algorithms)

For example, if the desired security
strength of the HMAC application is 256 bits, the HMAC
key K shall be generated with a
security strength of at least 256 bits, and an approved
hash function with the message
digest length of at least 256/2 (128) bits shall be used.

But I'd rather say, that the biggest problem would be not in
length, but in key generation algortihm itself.

SHA1 gives you 160 bits of output, but I believe that it gets
something like ~75 bits of randomness on input (8 digits of
Unix epoch seconds over the last few years + some fractional
number of 15 digits).
Furthermore, according to perldoc, rand is not
cryptographically secure and you should not rely on it in security-
sensitive situations. In some rare cases, this generator may
even have its seed tied to current time, that is your second
source of randomness. Not sure if it's worth trying to analyze
it deeper, let's just say that this key generation (or more like
derivation?) method is not widely used, "recommended" or
"approved" :-)

Instead of trying to proof correctness of that one, I'd rather
pack some random octets from Crypt::Random, that is
actually a cryptographically secure random number
generator (NIST SP 800-133 asks for one for this use) and call
it a day.

3

https://perldoc.perl.org/functions/rand

 stigtsp mentioned this pull request on Sep 28, 2024

Secure by default sessions #2200 Open

stigtsp commented on Sep 28, 2024 •

I've done some work on a proposal to fix this that seems to
be in line with what @jkramarz (and @latk) is raising:

Secure by default sessions #2200

edited

 jkramarz mentioned this pull request on Oct 11, 2024

Add support for Mojolicious session
cookies hashcat/hashcat#4090

 Open

https://github.com/stigtsp
https://github.com/stigtsp
https://github.com/mojolicious/mojo/pull/2200
https://github.com/mojolicious/mojo/pull/2200
https://github.com/stigtsp
https://github.com/jkramarz
https://github.com/latk
https://github.com/mojolicious/mojo/pull/2200
https://github.com/mojolicious/mojo/pull/2200
https://github.com/jkramarz
https://github.com/jkramarz
https://github.com/hashcat/hashcat/pull/4090
https://github.com/hashcat/hashcat/pull/4090
https://github.com/hashcat/hashcat/pull/4090
https://github.com/stigtsp

