
CasualX / obfstr Public

Code Issues Pull requests Actions Security Insights

Unsound issue while converting bytes to utf8 str #60

New issue

Closed #61

CXWorks opened on Oct 4, 2024

Hi, thanks for your time to read this issue. Our static analysis tool found there might be an unsound issue
in your unsafe_as_str converting the bytes to utf8 str:

obfstr/src/lib.rs
Lines 202 to 208 in ec1a20b

As mentioned in the comments, this may introduce invalid utf8 conversion and producing an invalid
value, which is considered as undefined behaviors in Rust. We expect either to mark the whole function
as unsafe or leverage the safe verison to convert because this library can take raw bytes from user and
missed the validation of utf8. As a reference, the safe version of the utf8 conversion in std is:

https://github.com/rust-
lang/rust/blob/3002af6cb643138839537f6fd0265162610fdbbe/library/core/src/str/converts.rs#L131-L140

Could you please help us double check the potential probelm? Thanks again for your time.

CasualX on Oct 5, 2024 Owner

I suspect this is an AI bot?

This function is intended to be used by the crate's macros only. Users of the crate should never use this
function, hence why it is hidden from the docs. It is required to be public due to how macros work.

202 pub fn unsafe_as_str(bytes: &[u8]) -> &str {

203 // When used correctly by this crate's macros this should be safe

204 #[cfg(debug_assertions)]

205 return str::from_utf8(bytes).unwrap();

206 #[cfg(not(debug_assertions))]

207 return unsafe { str::from_utf8_unchecked(bytes) };

208 }

https://github.com/CasualX
https://github.com/CasualX/obfstr
https://github.com/CasualX/obfstr
https://github.com/CasualX/obfstr/issues
https://github.com/CasualX/obfstr/pulls
https://github.com/CasualX/obfstr/actions
https://github.com/CasualX/obfstr/security
https://github.com/CasualX/obfstr/pulse
https://github.com/login?return_to=https://github.com/CasualX/obfstr/issues/60
https://github.com/CasualX/obfstr/pull/61
https://github.com/CXWorks
https://github.com/CXWorks
https://github.com/CasualX/obfstr/blob/ec1a20b2a7c318c921fad8136867430eba19c4c0/src/lib.rs#L202-L208
https://github.com/CasualX/obfstr/commit/ec1a20b2a7c318c921fad8136867430eba19c4c0
https://github.com/rust-lang/rust/blob/3002af6cb643138839537f6fd0265162610fdbbe/library/core/src/str/converts.rs#L131-L140
https://github.com/rust-lang/rust/blob/3002af6cb643138839537f6fd0265162610fdbbe/library/core/src/str/converts.rs#L131-L140
https://github.com/CasualX
https://github.com/CasualX

CXWorks on Oct 5, 2024 Author

Hi,

Thanks for your quick response. I am not an AI bot 😄 but I do use a template to report bugs.

For this unsound issue, it's because user has the access to control the input, and in the debug mode, an
utf8 validation is done but in release mode, this validation is skipped. So following code will have different
behaviors in debug mode and release mode, and in release mode it's considered as an undefined
behavior(invalid value) in Rust:

Thanks again for your patience.

CasualX on Oct 5, 2024 Owner

Oh I see, I overlooked that you could use a custom type.

It is important that no string validation is done at runtime for performance, the check being done when
debug_assertions is to catch any accidents just in case. And it will catch your example, you have to really
go out of your way to trigger this UB 😅

The bytes version asserts that the type is &[u8] with this line: _OBFBYTES_STRING: &[u8] = $s; .

Would it be enough that the input $s string passed to the macro is asserted to be a &str ? You could
still call the hidden exported unsafe_as_str (it has unsafe in the name after all...) but it will be harder to
misuse.

CasualX closed this as completed on Oct 5, 2024

#[forbid(unsafe_code)]
use obfstr::unsafe_as_str;

struct A{}
impl A {
 pub const fn as_bytes(&self) -> &[u8] {
 // an invalid utf-8 encoding
 [0xC0, 0x80].as_slice()
 }
}

fn main() {
 println!("{:?}", obfstr::obfstr!(A{}))
}

👍 1

CasualX reopened this on Oct 5, 2024

https://github.com/CXWorks
https://github.com/CXWorks
https://github.com/CasualX
https://github.com/CasualX
https://github.com/CasualX/obfstr/issues?q=is%3Aissue%20state%3Aclosed%20archived%3Afalse%20reason%3Acompleted
https://github.com/CasualX
https://github.com/CasualX

No one assigned

Assignees

No labels

Labels

No projects

Projects

No milestone

Milestone

None yet

Relationships

Development

Code with Copilot Agent Mode

CasualX/obfstr
Restrict obfstr! argument type to string slices.

Participants

CXWorks on Oct 5, 2024 Author

Thanks for your help, the patch looks great.

CasualX on Oct 5, 2024 Owner

Published, thanks for the report!

CasualX mentioned this on Oct 5, 2024

Restrict obfstr! argument type to string slices. #61

CXWorks closed this as completed on Oct 5, 2024

❤️ 1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

https://github.com/CasualX/obfstr/pull/61
https://github.com/CXWorks
https://github.com/CXWorks
https://github.com/CasualX
https://github.com/CasualX
https://github.com/CasualX
https://github.com/CasualX/obfstr/pull/61
https://github.com/CasualX/obfstr/issues?q=is%3Aissue%20state%3Aclosed%20archived%3Afalse%20reason%3Acompleted
https://github.com/CXWorks
https://github.com/login?return_to=https://github.com/CasualX/obfstr/issues/60
https://github.com/signup?return_to=https://github.com/CasualX/obfstr/issues/60

https://github.com/CasualX
https://github.com/CXWorks

