
CPAN Author's Guide to Random Data for
Security
Robert Rothenberg

CPAN Author’s Guide to Random Data for Security
Good Sources of Random Data

Crypt::URandom
Sys::GetRandom

Using Cryptographic Strength PRNGs
Crypt::PRNG
Math::Random::ISAAC

Generating Tokens and Passwords
Crypt::URandom::Token
Session::Token
Crypt::PRNG

References
License and use of this document

Acknowledgements

CPAN Author’s Guide to Random Data for Security

Any secret token that allows someone to access a resource or perform an action should be generated
with a secure random number generator. That includes:

encryption keys
message padding and initialisation vectors
password generation
password salts and peppers
authentication tokens
session tokens
nonces

The built-in rand function is not fit for security purposes: it is seeded by only 32-bits (4 bytes), and the
output can be predicted easily.

A cryptographic-strength pseudo-random number generator (PRNG) won’t improve security if it was
seeded with data from rand : ultimately the output is of that algorithm still comes from a 32-bit seed.

Report Security Issue Documents & Guides Presentations

https://perldoc.perl.org/functions/rand
https://www.perlmonks.org/?node_id=151595
https://security.metacpan.org/
https://security.metacpan.org/docs/report.html
https://security.metacpan.org/docs/
https://security.metacpan.org/presentations/


Good Sources of Random Data
Modern operating systems provide access to random data:

Linux and BSD variants have special devices like /dev/random  and /dev/urandom .
Newer Linux and BSD variants have the getrandom(2) system call.
Windows provides a CryptGenRandom  function in the API.

These sources are easy to access from Perl using several modules. We are listing a few here that are
lightweight, and which (generally) have good defaults.

It’s also preferable to use existing and up-to-date modules than to roll your own method for reading
random data. The benefits of reducing non-core dependencies are outweighed by potential bugs
introduced by duplicating code that needs to be maintained separately.

Crypt::URandom

The simplest to use, is Crypt::URandom. It is a lightweight module that reads from a random data source
on a variety of systems, using the /dev/urandom  device or equivalents on other operating systems,
including Windows. Newer versions will also use the getrandom  or getentropy  calls on systems
that support those calls.

To obtain 256-bits (32 bytes) of data:

use Crypt::URandom qw( urandom );

my $bytes = urandom(32);

Since this is a wrapper around the operating system’s random data source, there is no worry about child
processes with the same parent returning the same data (i.e., it is “fork safe”).

It is important to note that there is a common misconception that /dev/urandom  is insecure. This is
untrue, as /dev/random  and /dev/urandom  use the same entropy pool and PRNG internally. In
newer Linux kernels, /dev/random  no longer blocks and is an alias for /dev/urandom . See Myths
about /dev/urandom for an in-depth discussion of this.

Sys::GetRandom

If you are writing code that only runs on Linux or BSD systems with the getrandom  system call, you
can use Sys::GetRandom, an XS module that calls the function directly. To obtain 256-bits (32 bytes) of
data using it:

use Sys::GetRandom qw( random_bytes );

my $bytes = random_bytes(32);

http://man.he.net/man2/getrandom
https://metacpan.org/pod/Crypt::URandom
https://www.thomas-huehn.com/myths-about-urandom/
https://www.thomas-huehn.com/myths-about-urandom/
https://metacpan.org/pod/Sys::GetRandom


There is also a pure-Perl version Sys::GetRandom::PP that uses the syscall  function.

Note there are some caveats when using getrandom  to retrieve more than 256 bytes at a time, as the
amount of data returned may be less due to interrupts.

Using Cryptographic Strength PRNGs
It’s often faster to use random data to seed a cryptographic strength PRNG (CSPRNG) and pull data
from that, than to repeatedly request random data from the operating system.

It’s important to note that CSPRNGs are not “less secure”. If the algorithm is considered secure, then a
PRNG seeded with 256 or more bits is difficult to predict the output of. If the use case is to generate
short-lived tokens then it is more than adequate.

Crypt::PRNG

Crypt::PRNG is part of the CryptX cryptographic toolkit that uses the libtomcrypt. It will initialise a
cryptographic-strength PRNG from /dev/urandom , and claims to be thread and fork safe.

It also supports several utility methods for returning base-64 strings, URL-safe base-64 strings, random
strings or strings with custom alphabets, random integers and random floating point numbers.

For example,

use Crypt::PRNG;

my $bytes = Crypt::PRNG->new->bytes(32);

will return 256 bits of random data.

Math::Random::ISAAC

Math::Random::ISAAC is a small and very fast CSPRNG to generate 32-bit integers and floating point
numbers. There is also an XS-version Math::Random::ISAAC::XS.

One caveat of this module is that it needs to be manually seeded by 256 long integers. This is not
difficult:

use Crypt::URandom qw( urandom );

use Math::Random::ISAAC;

my $rng = Math::Random::ISAAC->new( unpack( "N*", urandom(1024) ) ); # 8192 bits

Generating Tokens and Passwords

https://metacpan.org/pod/Sys::GetRandom::PP
https://metacpan.org/pod/Crypt::PRNG
https://metacpan.org/dist/CryptX
https://github.com/libtom/libtomcrypt
https://metacpan.org/pod/Math::Random::ISAAC
https://metacpan.org/pod/Math::Random::ISAAC::XS


When generating raw random data for encryption keys or initialisation vectors, a common need is to
generate a printable string, for example as

part of a secret URL or file path,
a session id, key or token in a cookie
a random password
a nonce for a web site’s Content Security Policy

The simplest way to convert a string of random bytes into something readable is to use the built-in pack
and unpack functions. To convert some data into a string of hex digits, use

my $str = unpack("H*", $bytes);

or a uuencoded string

my $str = pack("u*", $bytes);

We can also encode the string using MIME::Base64:

use MIME::Base64 qw( encode_base64 );

my $str = encode_base64($bytes);

There are times where you may want a more restricted alphabet, such as base-62. There are modules
that let you generate random strings with custom alphabets or URL-safe encodings.

Note that returning a message digest of random bytes adds no security. Likewise, mixing random data
with other information such as a timestamp or PID is unnecessary and does not improve the security.

Crypt::URandom::Token

Crypt::URandom::Token will generate strings for a specific alphabet using data from Crypt::URandom
directly. For example,

use Crypt::URandom::Token qw(urandom_token);

my $token = urandom_token();

will return a random printable string such as “tB6DZ9e4s5HHh9yidQvhwNMG0HnOuPztfd95w9hdds5b”.

A potential downside of this module is that it reads from the system’s random source directly, and may
not be as fast as using a PRNG.

Session::Token

https://perldoc.perl.org/functions/pack
https://perldoc.perl.org/functions/unpack
https://en.wikipedia.org/wiki/Uuencoding
https://metacpan.org/pod/MIME::Base64
https://metacpan.org/pod/Crypt::URandom::Token


Session::Token is an XS module that seeds the ISAAC PRNG with /dev/urandom  (or the Windows
equivalent) and uses it to generate tokens to a desired length and custom alphabet. For example,

use Session::Token;

my $token = Session::Token->new->get;

will return a string of mixed-case letters and digits, such as “z5DfxjKRu5dCkA3RRjj3F5”.

Caution: There are some caveats about initialising this properly after forking. There are also unreleased
bug fixes in the git repository that may affect how it is used.

Crypt::PRNG

As we noted above, Crypt::PRNG supports several utility methods for returning base-64 strings, URL-
safe base-64 strings, random strings or strings with custom alphabets, random integers and random
floating point numbers. For example,

use Crypt::PRNG;

my $token = Crypt::PRNG->new->string(22);

will return a string of mixed-case letters and digits, such as “y1FpfRQszS72GH4h4zTXov”.

References
Far From Random: Three Mistakes From Dart/Flutter’s Weak PRNG, December 2024.

ISAAC, a fast cryptographic random number generator.

Lattice Reduction: a Toolbox for the Cryptanalyst, A. Joux and J. Stern, 1994.

Myths about /dev/urandom, March 2014.

RFC 4086, June 2005.

Predict Random Numbers, Perl Monks, March 2002.

License and use of this document
Version: 0.1.4
License: CC-BY-SA-4.0
Copyright: © Robert Rothenberg rrwo@cpan.org, Some rights reserved.

You may use, modify and share this file under the terms of the CC-BY-SA-4.0 license.

https://metacpan.org/pod/Session::Token
https://metacpan.org/pod/Crypt::PRNG
https://www.zellic.io/blog/proton-dart-flutter-csprng-prng/
https://burtleburtle.net/bob/rand/isaacafa.html
https://www.di.ens.fr/~stern/data/St54.pdf
https://www.thomas-huehn.com/myths-about-urandom/
https://www.rfc-editor.org/info/rfc4086
https://www.perlmonks.org/?node_id=151595
https://creativecommons.org/licenses/by-sa/4.0/deed
mailto:rrwo@cpan.org
https://creativecommons.org/licenses/by-sa/4.0/deed


Acknowledgements

Several people have been involved in the development of this document

Robert Rothenberg (main author)
Alexander Hartmaier
H. Merijn Brand
Salve J. Nilsen
Stig Palmquist
Thibault Duponchelle
Timothy Legge

CPAN Security Outreach &
Information Project

 CPAN-Security

 cpansec

CPAN Security Group (CPANSec) 🦆

https://github.com/CPAN-Security
https://github.com/CPAN-Security
https://fosstodon.org/@cpansec
https://fosstodon.org/@cpansec

